
Automated Software Verification
Can Machines Help Us Improve Software Quality?

Simmo Saan Vesal Vojdani

Department of Computer Science
University of Tartu

Digit 2025 (May 9, Tartu)

Get Dev Container to follow along later:
�/sws-lab/digit2025-infer

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 1 / 30

https://github.com/sws-lab/digit2025-infer
https://github.com/sws-lab/digit2025-infer

Motivation

▶ Quality assurance saves money! (Airbus)

▶ But it is easier to generate code, than to verify it!
(AI is currently making this even worse. . .)

▶ “Closing The Software Understanding Gap”

TLP:CLEAR

This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information
carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public
release. Subject to standard copyright rules, TLP:CLEAR information may be distributed without restriction. For
more information on the Traffic Light Protocol, see cisa.gov/tlp.

TLP:CLEAR

Closing the Software Understanding
Gap

Publication: January 16, 2025

Cybersecurity and Infrastructure Security Agency
Defense Advanced Research Projects Agency
Office of the Under Secretary of Defense for Research and Engineering
National Security Agency

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 2 / 30

https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/4031718/nsa-jointly-releases-recommendations-for-closing-the-software-understanding-gap/

The Solution: Use Formal Verification!
But. . . that’s for safety-critical systems only?!

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 3 / 30

A Spectrum of (Semi-)Formal Methods
We focus on methods with high levels of automation!

1. How Amazon built Cedar
Deductive methods in practice.

2. Automated Verification with SV-COMP tools
State-of-the-art in automated software verification.

3. Scalable Analysis with Facebook Infer
Introduction to abstract interpretation!

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 4 / 30

1. Deductive Verification
How Amazon Built Cedar with Verification-Guided Development (VGD)

Amazon Cedar (Dafny & Lean): Verified
authorization engine of AWS Verified Permissions.

Project Everest (F*): Verified cryptography library
(HACL*/EverCrypt) deployed in Firefox, Windows,
Linux kernel, WireGuard.

EverParse (F*): Verified parsers securing every
network packet in Azure Hyper-V.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 5 / 30

Hoare Triplets (aka Code Contracts)

Lϕ M S Lψ M

▶ For each state satisfying pre-condition ϕ,
▶ if execution reaches the end of S,
▶ the resulting state satisfies post-condition ψ.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 6 / 30

So let’s look at simple Dafny example

int abs(int i) {
if (0 <= i)

r := i;
else

r := -i;
}

▶ Prove: for any input (i ∈ Z), returns r ⩾ 0.

▶ Does this also hold for Java’s int?

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 7 / 30

How to express this in Java?

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 8 / 30

Key Points

▶ Partial specs suffice to uncover edge cases!

▶ Central focus of contemporary PL research:
making signatures more expressive.
method Abs(i: int32) returns (r: int32)

ensures 0 <= r || r == -0x8000_0000

method AbsExact(i: int32) returns (r: int32)
requires i != -0x8000_0000
ensures 0 <= r

▶ Java: int abs(int a) and int absExact(int a)

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 9 / 30

Cedar Policy (cedarpolicy.com)
A Language and Evaluation Engine for Access Control Policies

permit(
principal,
action in [Action::"edit", ...],
resource

)
when {

resource.owner == principal.id
};

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 10 / 30

Cedar Authorization Algorithm

1. If any forbid policy evaluates to true,
then the final result is Deny.

2. Else, if any permit policy evaluates to true,
then the final result is Allow.

3. Otherwise (i.e., no policy is satisfied),
the final result is Deny.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 11 / 30

Proving Properties about Cedar
�/cedar-policy/cedar-spec/blob/v3.0.1/cedar-dafny/thm/basic.dfy

lemma ForbidTrumpsPermit(request: Request, store: Store)
requires // If some forbid policy is satisfied, then

exists f ::
f in store.policies.policies.Keys &&
store.policies.policies[f].effect == Forbid &&
Authorizer(request, store).satisfied(f)

ensures // the request is denied.
Authorizer(request, store).isAuthorized().decision == Deny

{
var f :| f in Authorizer(request, store).forbids();

}

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 12 / 30

https://github.com/cedar-policy/cedar-spec/blob/v3.0.1/cedar-dafny/thm/basic.dfy

Differential Random Testing (DRT)
The Key Component of Verification-Guided Development

▶ Reference implementation in Dafny (then Lean).
▶ Production implementation in Rust.
▶ The model is used as a test oracle for

coverage-guided fuzzing.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 13 / 30

Was it worth it?
https://www.amazon.science/publications/
how-we-built-cedar-a-verification-guided-approach

While carrying out proofs, we found and
fixed 4 bugs in Cedar’s policy validator, and
DRT and PBT helped us find and fix 21 ad-
ditional bugs in various parts of Cedar.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 14 / 30

https://www.amazon.science/publications/how-we-built-cedar-a-verification-guided-approach
https://www.amazon.science/publications/how-we-built-cedar-a-verification-guided-approach

This is practical because. . .

▶ They formalized a complicated part of their code.
▶ The production code is still in a mainstream

language.
▶ The Verification-Guided Development process

unveiled many bugs in the code.
▶ The production team does not depend on esoteric

languages and/or knowledge.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 15 / 30

2. Automated Software Verification?
(NB! This slide is a joke. In this house, we believe in truthful methods.)

As an aside (if interested): ChatGPT verification.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 16 / 30

https://chatgpt.com/share/681ce559-95e8-8010-9278-38ed4faf1912

SV-COMP
International Competition on Software Verification

▶ Automated tools compete to find bugs and prove
correctness of C and Java programs.

▶ Driver of innovation in verification techniques!

▶ Largest competition for software verification tools
SV-COMP 2025 key statistics:

62
Tools

33
Teams

12
Countries

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 17 / 30

Goblint
https://goblint.in.tum.de

▶ Our tool at SV-COMP
▶ Static analyzer for C programs
▶ Specializes in concurrency
▶ Based on abstract interpretation
▶ Sound (on SV-COMP)
▶ Implemented in OCaml

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 18 / 30

https://goblint.in.tum.de

Formal Methods Tools Repository
https://fm-tools.sosy-lab.org

▶ SV-COMP tools are uploaded to Zenodo.

▶ These are powerful verification engines
(but focused on smaller programs).

▶ You can use these tools! If you extract part of your
code, these tools can find real vulnerabilities.

▶ Our student extracted reported vulnerabilities and
attempted to verify the fixes.
▶ Flaws in patched versions (e.g., CVE-2025-32776).
▶ We are working on improving the extraction process.

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 19 / 30

https://fm-tools.sosy-lab.org
https://www.cvedetails.com/cve/CVE-2025-32776/

The SV-COMP Workflow (Simplified)

1. Verification task:
▶ Program – source code
▶ Property – memory safety, overflow, data race, memory

leak, termination, reachability (assert)
▶ Expected verdict – correct (true) or incorrect (false)

2. Verifier analyzes:

▶ 15 min CPU time, 4 CPU cores, 15 GB RAM

3. Verifier output:

▶ Verdict – correct, incorrect or unknown

4. Verifier scores points if

▶ Verdict is the same as expected

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 20 / 30

The SV-COMP Workflow (Simplified)

1. Verification task:
▶ Program – source code
▶ Property – memory safety, overflow, data race, memory

leak, termination, reachability (assert)
▶ Expected verdict – correct (true) or incorrect (false)

2. Verifier analyzes:
▶ 15 min CPU time, 4 CPU cores, 15 GB RAM

3. Verifier output:

▶ Verdict – correct, incorrect or unknown

4. Verifier scores points if

▶ Verdict is the same as expected

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 20 / 30

The SV-COMP Workflow (Simplified)

1. Verification task:
▶ Program – source code
▶ Property – memory safety, overflow, data race, memory

leak, termination, reachability (assert)
▶ Expected verdict – correct (true) or incorrect (false)

2. Verifier analyzes:
▶ 15 min CPU time, 4 CPU cores, 15 GB RAM

3. Verifier output:
▶ Verdict – correct, incorrect or unknown

4. Verifier scores points if

▶ Verdict is the same as expected

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 20 / 30

The SV-COMP Workflow (Simplified)

1. Verification task:
▶ Program – source code
▶ Property – memory safety, overflow, data race, memory

leak, termination, reachability (assert)
▶ Expected verdict – correct (true) or incorrect (false)

2. Verifier analyzes:
▶ 15 min CPU time, 4 CPU cores, 15 GB RAM

3. Verifier output:
▶ Verdict – correct, incorrect or unknown

4. Verifier scores points if
▶ Verdict is the same as expected

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 20 / 30

3. Abstract Interpretation

▶ A theoretical framework for static analysis.
▶ Simulates program on abstract values.
▶ Ensuring we cover every possible

execution path (soundness).

▶ Famous Examples:
▶ Astrée (ENS & AbsInt)
▶ IKOS (NASA)
▶ Goblint (TUM & Tartu)

▶ Used to verify safety-critical software!

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 21 / 30

Soundness!
Illustration from Antoine Miné (MPRI M2-6: Abstract interpretation)

▶ Goal: program satisfy spec (P ⊆ S).
▶ Over-approximate P by abstract states A.

If A ⊆ S, program correct:

Overview of abstract interpretation

Soundness and false alarms

→=

S

P

A

P ↑ S A ↑ S
program proved

Goal: prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness
=→ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 0 Introduction Antoine Miné p. 18 / 39

If A ̸⊆ P, potential bug:

Overview of abstract interpretation

Soundness and false alarms

→↑=

S

P

A

P ↓ S A →↓ S
false alarm

Goal: prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness
=→ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 0 Introduction Antoine Miné p. 18 / 39

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 22 / 30

https://www-apr.lip6.fr/~mine/enseignement/mpri/current/

Infer: More Practical Usage . . .
Moving Fast with Software Verification

▶ A framework for modular static analysis
(Integrated into CI pipelines at Facebook.)

▶ It is based on abstract interpretation.

▶ Occasionally abandons soundness. (Gasp!)

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 23 / 30

Running Infer
Demo on JFreeChart 1.5.0

▶ Get Dev Container to follow along:

�/sws-lab/digit2025-infer

▶ $ make install
$ cd examples/jfreechart-1.5.0/
$ infer run -- mvn compile

▶ Results on JFreeChart 1.5.0:
Found 60 issues

Issue Type(ISSUED_TYPE_ID): #
Thread Safety Violation(THREAD_SAFETY_VIOLATION): 36

Null Dereference(NULLPTR_DEREFERENCE): 19
Inefficient Keyset Iterator(INEFFICIENT_KEYSET_ITERATOR): 4

Resource Leak(PULSE_RESOURCE_LEAK): 1

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 24 / 30

https://github.com/sws-lab/digit2025-infer
https://github.com/sws-lab/digit2025-infer

Running Infer
Demo on JFreeChart 1.5.0

▶ Get Dev Container to follow along:

�/sws-lab/digit2025-infer

▶ $ make install
$ cd examples/jfreechart-1.5.0/
$ infer run -- mvn compile

▶ Results on JFreeChart 1.5.0:
Found 60 issues

Issue Type(ISSUED_TYPE_ID): #
Thread Safety Violation(THREAD_SAFETY_VIOLATION): 36

Null Dereference(NULLPTR_DEREFERENCE): 19
Inefficient Keyset Iterator(INEFFICIENT_KEYSET_ITERATOR): 4

Resource Leak(PULSE_RESOURCE_LEAK): 1

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 24 / 30

https://github.com/sws-lab/digit2025-infer
https://github.com/sws-lab/digit2025-infer

Tutorial: Resource-Counting Domain

▶ The abstract state is a non-negative integer n ∈ N
(the number of resources currently held).

▶ The transfer functions for acquire/release are
simply increment/decrement.

▶ States are ordered numerically: 0 ⊑ 1 ⊑ 2 ⊑

▶ Paths are joined by taking the larger:
n1 ⊔ n2 = max(n1,n2).

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 25 / 30

Resource-Counting: Example 1

void basicLeakBad() throws /* ... */ {
new FileInputStream("file.txt");

} // Leaked 1 resource

void doubleLeakBad() throws /* ... */ {
new FileInputStream("file1.txt");
new FileInputStream("file2.txt");

} // Leaked 2 resources

void basicReleaseOk() throws /* ... */ {
FileInputStream stream =

new FileInputStream("file.txt");
stream.close();

} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 26 / 30

Resource-Counting: Example 1

void basicLeakBad() throws /* ... */ {
new FileInputStream("file.txt");

} // Leaked 1 resource

void doubleLeakBad() throws /* ... */ {
new FileInputStream("file1.txt");
new FileInputStream("file2.txt");

} // Leaked 2 resources

void basicReleaseOk() throws /* ... */ {
FileInputStream stream =

new FileInputStream("file.txt");
stream.close();

} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 26 / 30

Resource-Counting: Example 1

void basicLeakBad() throws /* ... */ {
new FileInputStream("file.txt");

} // Leaked 1 resource

void doubleLeakBad() throws /* ... */ {
new FileInputStream("file1.txt");
new FileInputStream("file2.txt");

} // Leaked 2 resources

void basicReleaseOk() throws /* ... */ {
FileInputStream stream =

new FileInputStream("file.txt");
stream.close();

} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 26 / 30

Resource-Counting: Example 2

void acquireTwoForgetOneBad() throws /* ... */ {
FileInputStream stream1 =

new FileInputStream("file.txt");
FileInputStream stream2 =

new FileInputStream("file.txt");
stream1.close();

} // Leaked 1 resource

void acquireTwoThenReleaseOk() throws /* ... */ {
FileInputStream stream1 =

new FileInputStream("file.txt");
FileInputStream stream2 =

new FileInputStream("file.txt");
stream1.close();
stream2.close();

} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 27 / 30

Resource-Counting: Example 2

void acquireTwoForgetOneBad() throws /* ... */ {
FileInputStream stream1 =

new FileInputStream("file.txt");
FileInputStream stream2 =

new FileInputStream("file.txt");
stream1.close();

} // Leaked 1 resource

void acquireTwoThenReleaseOk() throws /* ... */ {
FileInputStream stream1 =

new FileInputStream("file.txt");
FileInputStream stream2 =

new FileInputStream("file.txt");
stream1.close();
stream2.close();

} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 27 / 30

Tutorial: Resource-Counting Domain

▶ The abstract state is a non-negative integer n ∈ N
(the number of resources currently held).

▶ The transfer functions for acquire/release are
simply increment/decrement.

▶ States are ordered numerically: 0 ⊑ 1 ⊑ 2 ⊑

▶ Paths are joined by taking the larger:
n1 ⊔ n2 = max(n1,n2).

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 28 / 30

Resource-Counting: Example 3

void mayLeakBad(Boolean b) throws /* ... */ {
FileInputStream stream;
if (b) {

stream = new FileInputStream("file.txt");
}

} // Leaked 1 resource

void choiceCloseOk(Boolean b) throws /* ... */ {
FileInputStream stream =

new FileInputStream("file.txt");
if (b) {
stream.close();

} else {
stream.close();

}
} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 29 / 30

Resource-Counting: Example 3

void mayLeakBad(Boolean b) throws /* ... */ {
FileInputStream stream;
if (b) {

stream = new FileInputStream("file.txt");
}

} // Leaked 1 resource

void choiceCloseOk(Boolean b) throws /* ... */ {
FileInputStream stream =

new FileInputStream("file.txt");
if (b) {

stream.close();
} else {
stream.close();

}
} // Leaked 0 resources

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 29 / 30

Conclusion / Take-Away Message

▶ You can apply formal verification gracefully without
committing to esoteric languages and tools . . .

▶ May need some guidance: industrial master’s
thesis with us?

▶ Get Dev Container for Infer demos:
�/sws-lab/digit2025-infer

Saan and Vojdani (University of Tartu) Automated Software Verification Digit 2025 (May 9, Tartu) 30 / 30

https://github.com/sws-lab/digit2025-infer
https://github.com/sws-lab/digit2025-infer

	Introduction

