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& frontiers

How our body's internal navigation system works

Different types of cells in the brain help us create an internal spatial representation
of our environment or “cognitive map” and play a unique role in navigation.

Place cells

Location-
related brain
cells studied in
rats have also
been found in
the human brain.

In 1971, researchers John O'Keefe and John Dostrovsky
worked with rats to discover place cells. Located in the
hippocampus region of the brain, different place cells are
acitvated only at specific locations. They tell us where we are.

Entorhinal cortex

\

Hippoéampus

: To navigate successfully in the environment, you need to
~ - know your starting position, walking direction, and speed.
4\ " In addition to place cells (A), other cell types have a unique

' role in navigation. Speed cells (B) increase their activity when
an animal moves faster, helping it calculate the distance it
passes when it moves. Head direction cells (C) inform the
animal in which direction it is heading.

B Distance (speed)

e == 'CDirection

Grid cells

In 2005 May-Britt and Edvard Moser discovered

grid cells, located in the entorhinal cortex (D). Unlike
place cells, active at only one location, each grid cell
becomes active in multiple locations in an environment,
which are evenly spaced in a repeating hexagonal pattern.
This creates a system of coordinates with a metric, similar
to the latitude-longitude grid we use in maps.

Grid cells help determine location ... ... similarly to GPS systems

Different grid cells . ° In a similar way, in
produce different . v 1 GPS systems the
hexagonal patterns at ’ ‘-ﬁ\ }' distance measuring
different scales and . — of one satelite
shifted with respect to e B L alone can't pinpoint
the grids of other cells. a location, but the
Using the overlapping T T e '. n overlap of at last
grids of several cells, three satelites is

location can be
uniquely identified by
coincident firing of
multiple grid cells.

used to pinpoint
Satellite the exact location
of a receiver.

Source: How do we Find our Way? Grid Cells in the Brain, by May-Britt Moser Infographic by
Published by Frontiers for Young Minds, Sep. 2021 5W Infographic
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Grid pattern -> Superposition of Fourier modes (Eigenfunctions of Laplacian on the
domain)

Grid scale -> Eigenvalue associated to contributing eigenfunctions



1 How do these neurons activate on a hexagonal pattern?

2 What is their functional role?



1 How do these neurons activate on a hexagonal pattern?

2 What is their functional role?



Research hypothesis

Grid cells = Fourier basis for the 2D environments




Fourier generalization to manifolds
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Fourier generalization to manifolds
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Generalised Fourier

frequencv decomposition

/\ /  Basis set to represent
\/ \/\/ M \/\/ functions
- Filtering of scales
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Ap = Adp

« Smoothing and interpolation

« Spectral coordinates




Representation Theory

Non-Abelian groups

Elements of the group are represented
by invertible matrices and the group operation
by matrix multiplication

Pontryagin Duality
Functions on locally compact Abelian groups (Z5)

Extension of Fourier for functions on groups
based on Pontryagin duality (group characters
generalize complex exponentials as basis functions)

A

G :=Hom(G,R/7Z)
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Spectral Geometry

Relation between geometry/topology and
eigenvalues and eigenfunctions of the Laplacian operator (Quantum mechanics)

Graphs

Manifolds

Relations between graph properties and spectra (M, g) — Spec(M, g)

of the graph Laplacian

Hypercube

Fourier decomposition of Boolean functions:

Eigenfunctions as minimizers of
Dirichlet form

Flat torus (Lattices) R"/A

eigenvectors of Graph Laplacian are the Poisson type formula relating the norms

characters of Zg

fi(-1,11" >R

of lattice points (lengths of closed geodesics)
to frequencies (eigenvalues)
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Classical Fourier Analysis
Functionson R R/Z Z Z,

Representing functions as sum of
trigonometric functions
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Geodesic Flows

Relation between geometry/topology a
and periodic geodesics (Classical mechanics)

Manifolds with boundary

Billiard dynamics

Manifolds without boundary

Relation between lengths of
closed geodesics and
eigenvalues of Laplacian



Spectral geometry

Relation between geometry/topology and
eigenvalues and eigenfunctions of the Laplacian operator



A Panoramic
View
of Riemannian
Geometry

9.3.3 Facts

The Laplacian on any compact Riemannian manifold provides us with all the
tools of Fourier analysis on our Riemannian manifold. Let us call a function
¢ an eigenfunction with eigenvalue the number A if

Af = \f.

The set of all eigenvalues of A is an infinite discrete subset of R™ called the
spectrum of A

Spec (M) ={ )} ={0< 1 <X <...} (9.5)

with A\x tending to infinity with k.
For each eigenvalue \;, the vector space of eigenfunctions ¢ satistying

Af = Nif

is always finite dimensional and its dimension is called the multiplicity of \;.
Once we have a basis of the eigenfunctions with this eigenvalue written out,
it is trivial to find an orthonormal basis

{0k}

(where & runs from 1 to the multiplicity) of eigenfunctions. Here the orthonor-
malcy is to be understood for the global scalar product

(F9) L2y = /M fa.



As for classical Fourier series, any reasonable function

f:M =R

ai=/Mf¢z'

and f is recovered from these coefficients by the converging series
f=) aip;.
i

In the same spirit, the scalar product of two functions is the sum of products
of their coefficients:

has Fourier coefficients

where
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9.3.4 Heat, Wave and Schrodinger Equations

We will follow the same steps that we did in §1.8: defining heat, wave and
Schrodinger equations on Riemannian manifolds. The heat equation for the
heat f(m,t) at time ¢t at a point m of the Riemannian manifold M is

of

A vl (9.6)
The wave equation for the height f(m,t) of the “water” after time t at a
point m 18
0/
o
where it M were a surface, you would consider M covered in a thin sheet
of water, or for M of three dimensions, M is a place through which sound
is propagating. The wave equation can also be considered as describing the
manifold M as a vibrating membrane object. Finally the Schrodinger equa-
tion uses complex valued functions and is written

a (9.7)

3¢ 9
A zﬁ(% (9.8)

where 2 = v —1 and A is Planck’s constant.



To solve these equations, at least formally, one uses the same trick as in
§51.8.1. To solve such an equation depending both on time ¢ and a point m &

M, the initial idea is to use the fact that, roughly by the Stone—Weierstraf
approximation theorem, we need only to consider product functions

f(m,t) = g(m)h(t) .

One will subsequently consider series of them (as in the theory of Fourier
series). Look for example at the heat equation. The function f = gh satisfies
the heat equation precisely when the functions g and h satisty

Ag h’
e 9.9
e 9.9)
where o
h/(t) = —
() i

is the usual derivative.
Since the first fraction depends only on the point m € M and the second
only on the time ¢ their common value has to be a constant, call it A. Then

the function
g: M —R

is an eigenfunction of A with eigenvalue A\, while h is an exponential decay
at rate \. If all eigenfunctions and eigenvalues of A are known, we can then
solve the heat equation explicitly. Note that the time dependence h(t) is

e~ for the heat equation
h(t) = < e for the Schrédinger equation

eVt for the wave equation.



Another way to write the solution f(m,t) with initial temperature f(m,0)
is to compute the Riemannian Fourier series

f(ma 0) - Z Ak Pk
k—1
and then -
f(m,t) =) axpr(m)e
k=1

For the wave equation, the fundamental solution similar to equation 9.10
requires imaginary terms, l1.e.

e’i\/ Art

which are linear combinations of
COS (\/ )\kt) and sin (\/ )\kt) .

But the dramatic difference between the heat equation and the wave equation
is that waves demand not converging series, but distributions. Heat spreads
out uniformly with time, while waves bounce up and down forever. This ma-

o




There are very few examples where the spectrum or the eigenfunctions
can be determined explicitly. Two old standards are rectangles and disks.
In both cases, separation of variables disentangles the eigenfunctions. Using
again the Stone—Weierstrafl theorem, and because the boundary condition
agrees with the separation, on a rectangle one need only look for product
functions f(x,y) = g(«)h(y), and there will be no other eigenfunctions. If
the rectangle has side lengths a and b respectively, then the eigenfunctions

are
TN ™Y

In —— d Z1
— sin— (1 721

where m and n are any integers, yielding the set of eigenvalues

2 2
. 1

i.e. to obtain an eigenvalue at most A we need m and n to be integer points
inside a certain ellipse. We will see below that a simple expression yields
an easy first order approximation of N(\) when A\ — o0, but the second
order term in A is related to deep number theory and is still not completely
understood today. It is believed that the number of integers m,n with

sin

e

is asymptotic to m2\? + O ()\€+1/2) as A\ — o0, for any € > 0, but there is
still no proof. This is called the Gauf} circle problem; see §31.8.5. However, it
is known that 72\ + O ()\1/ 2) is too small.



How about a second order a;')proximati_onj? In 1954, Pleijel got the next
order approximation. In his paper Kac 1966 [775], Kac works quite hard to
get the third term, guessing that the right formula should be:

F—(1—7r)

ie_ L Area(D) length(0D) 1
ry 27t 27t §

where r is the number of holes inside D. The second term is Pleijel’s. Note
that can one hear the area and the perimeter of D, hence the isoperimetric
inequality yields again the fact that disks are characterized by their spectrum.

Kac could only prove the third term for polygons. It was proven the
next year, 1967, in the very general context of Riemannian manifolds with
boundary by McKean and Singer in their fundamental paper of 1967 [910].
You will read much more about it in chapter 9.

® 9 )

Fig. 1.97. One can hear the number of holes

The Tauberian theorem above shows that the first terms of N(\) and
Z,fil exp(—A;t), can each be acquired from the other. But this does not
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CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York
To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

“La Physique ne nous donne pas seulement
'occasion de résoudre des probléemes . . ., elle nous
fait presentir la solution.” H. POINCARE.

Before I explain the title and introduce the theme of the lecture I should like
to state that my presentation will be more in the nature of a leisurely excursion
than of an organized tour. It will not be my purpose to reach a specified des-
tination at a scheduled time. Rather I should like to allow myself on many
occasions the luxury of stopping and looking around. So much effort is being
spent on streamlining mathematics and in rendering it more efficient, that a
solitary transgression against the trend could perhaps be forgiven.







1. Phase

2. Scale

3. Orientation




Faber-Krahn theorem




i= Rayleigh—Faber—Krahn inequality %A 1language

Article ev e comentpese te-oton- Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In spectral geometry, the Rayleigh—Faber—Krahn inequality, named after its conjecturer, Lord Rayleigh, and two individuals who
independently proved the conjecture, G. Faber and Edgar Krahn, is an inequality concerning the lowest Dirichlet eigenvalue of the
Laplace operator on a bounded domain in R™, n > 2.1l |t states that the first Dirichlet eigenvalue is no less than the corresponding
Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore, the inequality is rigid in the sense that if the first
Dirichlet eigenvalue is equal to that of the corresponding ball, then the domain must actually be a ball. In the case of n = 2, the
iInequality essentially states that among all drums of equal area, the circular drum (uniquely) has the lowest voice.



Grid pattern -> Superposition of Fourier modes (Eigenfunctions of Laplacian on the
domain)

Grid scale -> Eigenvalue associated to contributing eigenfunctions



i= Rayleigh—Faber—Krahn inequality %A 1language

Article Ve s soentpese enopton- Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In spectral geometry, the Rayleigh—Faber—Krahn inequality, named after its conjecturer, Lord Rayleigh, and two individuals who
independently proved the conjecture, G. Faber and Edgar Krahn, is an inequality concerning the lowest Dirichlet eigenvalue of the
Laplace operator on a bounded domain in R™, n > 2.1l |t states that the first Dirichlet eigenvalue is no less than the corresponding
Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore, the inequality is rigid in the sense that if the first
Dirichlet eigenvalue is equal to that of the corresponding ball, then the domain must actually be a ball. In the case of n = 2, the
iInequality essentially states that among all drums of equal area, the circular drum (uniquely) has the lowest voice.

Do grid cells for circular environments have lowest spatial frequency?



Generalised Fourier

frequencv decomposition

« Basis set to represent
functions

 Filtering of scales

« Smoothing and interpolation

o Spectral coordinates
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Path integration

5m
Desert ant

Cataglyphis




Current Position

Integrated Path —
estimates Current Position,
and gives direction, distance \

for return journey \
\
\
\ /
. (\e\]
o of U7 ce)
Start ~ "\e9 c%xon, disto



Time

1.2




Place cells HD cells

Linear

Velocities

Path integration amounts to compute the integral of velocity

Place cells as one-hot encoding of position



Classical theory of grid cells

- Toroidal connectivity of neurons

- Bump of activity updated by velocity cues (to solve path integration)
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Path integration just a particular case of driven dynamical system?



Path integration just a particular case of driven dynamical system?

Derivative Form Integral Form

t
Position r(t) r(t)=r, + J vt



Position and Velocity

X € = SV(€>J(' 1 C




Position and Velocity

X € = SV(€>J(' 1 C

Time domain

x(t) —»| h(f) » y(t) = h(f)*x(t)
‘ I InvIrse
‘Zap/ace ‘Zap/ace
‘Zap/ace
' ' |
X(s) —»| H(s) » Y(s) = H(s) X(s)

Frequency domain



Generalised Fourier

frequencv decomposition

« Basis set to represent
functions

 Filtering of scales

« Smoothing and interpolation

o Spectral coordinates
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“At the current state, rotate your left leg 25 degrees, place it down
beside the rock on the path, then swing your arm forward...”



“At the current state, rotate your left leg 25 degrees, place it down “Since I am on the west side of the river, I probably want to

beside the rock on the path, then swing your arm forward...” cross the river to get to the east side of the river and then walk
towards my campsite.”



Reinforcement Learning

» RL: process to learn long-term future rewards

« Core problem: interdependency of optimal actions

- Tractable when representations encode structure
of the environment/task that allows efficient discovery
of optimal policy, search of short-paths, replanning, etc...  Markov Decision Process




State abstractions: treats certain configurations of the environment as similar by aggregating them. Ex: “being west of the river”.

Temporal abstractions: temporally extended macro-actions that describe a general course of action. Ex: “cross the bridge”.
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» One-hot encoding
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» Spectral encoding

¢on(x)) for vertex x



Grid cells Place cells

Distributed encoding One-hot encoding

=

%

LI L 3

L4

o

A

e e 0 © ;

'y ° o O :

Module 1 Module 2 Module 3 Module 4

0| —» 1, 0,0, 0]
] —_— ro,1,o,o—w
s(z) = (p1(x), p2(x),...,on(x)) for vertex x — :0 ) =
B —_— (_o, 0, 0, 1]




Spectral clustering

1. Calculate the Laplacian L (or the normalized Laplacian)
2. Calculate the first k eigenvectors (the eigenvectors corresponding to the k£ smallest eigenvalues of L)
3. Consider the matrix formed by the first k eigenvectors; the [-th row defines the features of graph node [

4. Cluster the graph nodes based on these features (e.g., using k-means clustering)

Data after trying to cluster using Kmeans

Data after spectral clustering from scratch
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Graph Laplacian operator

Second-order central

flo +h) ~ 2f(z) + f(z — h)

h2

Kernel (1, -2, 1)

On a general graph:




Spectral clustering

1. Calculate the Laplacian L (or the normalized Laplacian)
2. Calculate the first k eigenvectors (the eigenvectors corresponding to the k£ smallest eigenvalues of L)
3. Consider the matrix formed by the first k eigenvectors; the [-th row defines the features of graph node [

4. Cluster the graph nodes based on these features (e.g., using k-means clustering)

Data after trying to cluster using Kmeans

Data after spectral clustering from scratch
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Diffusion maps :

- Dimensionality reduction technique }

- Embedding of data set into Euclidean space (low dimension)

- Coordinates computed from eigenvectors and eigenvalues of diffusion operator

- Geometric structure of high-dimensional data by modeling a diffusion process on a graph.




Diffusion maps GRS

- Dimensionality reduction technique N T R R T R AN

- Embedding of data set into Euclidean space (low dimension) & IR f

- Coordinates computed from eigenvectors and eigenvalues of diffusion operator

- Geometric structure of high-dimensional data by modeling a diffusion process on a graph.

Matrix Definition Purpose in Diffusion Maps
B Il",t—wj\‘z
Affinity Matrix W W, =e 22 Defines similarity between points
Degree Matrix D D;; = Ej Wij Measures total connectivity of each
point
Laplacian L = D — W Standard graph Laplacian Captures local diffusion
Random Walk Laplacian L., = I — Scales diffusion process Used to define Markov matrix
D 'w
Markov Matrix P = D~ 'W Defines transition Governs diffusion dynamics
probabilities

Eigenvectors of P or L, Basis for diffusion maps Used for dimensionality reduction



Diffusion maps i

- Dimensionality reduction technique B RN oy R ST A ples e ]

- Embedding of data set into Euclidean space (low dimension) Tt | eAsghes

- Coordinates computed from eigenvectors and eigenvalues of diffusion operator

- Geometric structure of high-dimensional data by modeling a diffusion process on a graph.

Matrix Definition Purpose in Diffusion Maps
|1'.lj—:lf."2
Affinity Matrix W W, = e = Defines similarity between points
Degree Matrix D D;; = Ej Wij Measures total connectivity of each
point : : : ] :
- Diffusion distance: small if there is a large number o
Laplacian L = D — W Standard graph Laplacian Captures local diffusion
Random Walk Laplacian L., = I — Scales diffusion process Used to define Markov matrix
o (0{y, te:) — Py, )
py, t|z;) — ply, t|x;
2
Markov Matrix P = D~ 'W Defines transition Governs diffusion dynamics p(fl?j, t|$z) — Pz?j Dy(z;, xj)” = Z o (v)
’ 0
probabilities Y

Eigenvectors of P or L, Basis for diffusion maps Used for dimensionality reduction
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- Embedding of data set into Euclidean space (low dimension) Tt | eAsghes

- Coordinates computed from eigenvectors and eigenvalues of diffusion operator

- Geometric structure of high-dimensional data by modeling a diffusion process on a graph.

Matrix Definition Purpose in Diffusion Maps
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Affinity Matrix W W, = e = Defines similarity between points
Degree Matrix D D;; = Ej Wij Measures total connectivity of each
point : : : ] :
- Diffusion distance: small if there is a large number o
Laplacian L = D — W Standard graph Laplacian Captures local diffusion
Random Walk Laplacian L., = I — Scales diffusion process Used to define Markov matrix
o (0{y, te:) — Py, )
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2
Markov Matrix P = D~ 'W Defines transition Governs diffusion dynamics p(fl?j, t|$z) — Pz?j Dy(z;, xj)” = Z o (v)
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Diffusion maps

- Dimensionality reduction technique

- Embedding of data set into Euclidean space (low dimension) Tt | eAsghes

- Coordinates computed from eigenvectors and eigenvalues of diffusion operator

- Geometric structure of high-dimensional data by modeling a diffusion process on a graph.

Matrix

Affinity Matrix W

Degree Matrix D

Laplacian L = D — W

Random Walk Laplacian L, = I —

Dw

Markov Matrix P = D 1W

Eigenvectors of P or L,

Definition
 lzg—zy 2

W, =e o

Diz’ — Ej Wij

Standard graph Laplacian

Scales diffusion process

Defines transition

probabilities

Basis for diffusion maps

Purpose in Diffusion Maps

Defines similarity between points

Measures total connectivity of each

point

- Diffusion distance: small if there is a large number o
Captures local diffusion

Used to define Markov matrix

(p(y, t|z;) — p(y, t|z;))>?
Ey: b0 (y)

Ui (z) = (A191(2), \y¥2 (), - - -, ALk ()

p(z;,t|z;) = P,f,j Dy (zi,z;)

Governs diffusion dynamics

Used for dimensionality reduction

Dy(zi,x;)? = || Uy (2;) — Ty (z;)]|°
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Spectral shape matching




Spectral shape matching

., N (x)) for vertex =

s(z) = (p1(z), p2(2), -




Spectral shape matching

s(x) = (p1(x), p2(x),...,on(x)) for vertex x

- Low-dimensional representations based on connectivity

- Diffusion distance shows invariance to non-stretching or non-topology changing transformations

- Correspondence problem

- Analogy-based inferences?
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Semantic networks
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O O @dryer oven stove

stairs basement



Associative learning
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Search in semantic networks: Remote Associates Test

Which word relates to all three cue words?

Word1 | Word2 | Word3 | Answer
man glue star
dew comb bee
rain test stomach
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Search in semantic networks: Remote Associates Test

Which word relates to all three cue words?

Word1 | Word2 | Word3 | Answer
man glue star super
dew comb bee honey
rain test stomach | acid




Search in semantic networks: Remote Associates Test

Which word relates to all three cue words? pie iPad

home

RAT Problem

Word1l | Word2 | Word3 | Answer

Words \ ’
man glue star super — |
dew comb bee honey
rain test stomach | acid

(solution)

friends

relatives

album




Search in semantic networks: Remote Associates Test

Which word relates to all three cue words? pie iPad

home

RAT Problem

Word1l | Word2 | Word3 | Answer

Words \ ’
man glue star super o _
dew comb bee honey "
rain test stomach | acid rec

friends

relatives

album




RAT: how does the brain solves it?

fruit
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Candidates: common nearest neighbor to all three cue words

Constraints from humans: |ocal search, memory constraints, difficulty



RAT: how does the brain solves it?

fruit
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friends

RAT Problem
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relatives

Candidates: common nearest neighbor to all three cue words

Constraints from humans: |ocal search, memory constraints, difficulty

Naive algorithm 1. Launch random walks from 3 initial cue words
Stopping criteria: 1st commonly visited word



RAT: how does the brain solves it?

fruit

album

friends

home

boat

RAT Problem

LVbnds—mx\\\ﬁb

relatives

Candidates: common nearest neighbor to all three cue words

Constraints from humans: |ocal search, memory constraints, difficulty

Naive algorithm 1. Launch random walks from 3 initial cue words
Stopping criteria: 1st commonly visited word

Naive algorithm 2. Represent each word with spectral coordinates
Output: Word with MinAvg Euclidean distance to the 3 cues



Functional role of grid cells?
More tasks involving grid cells...



GP for grid cells?
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& frontiers

How our body’s internal navigation system works . . e
| T | | | - Grid cells periodic pattern may
Different types of cells in the brain help us create an internal spatial representation

of our environment or “cognitive map” and play a unique role in navigation. a I IOW th e b ra i n tO fo r m Cog n itive

Place cells

e — maps in physical space

Location o p. In 1971, researchers John O'Keefe and John Dostrovsky
related brain 6 — { s worked with rats to discover place cells. Located in the . .
cells studied in / 7 : \ hippocampus region of the brain, different place cells are ( rd n t y t m fo r d t n e
\
/ \
rats have also 'J" lll itvated ly ts ific | ti s, Ti tell 5 r re. COO I a e S S e I S a C

been found in ) |

e I \.‘T A o — and orientation in space; how
=l St things are related to each other
independently of the observer
position)

/"'\ Entorhmal cortex

" \\ Hippocampus
[‘ \

\

A

/ A

e — N

In addition to place cells (A), other cell types have a unique o . .
le i igation. Speed cells (B) i their activity wh
e b e Lo el engage mental navigation in

passes when it moves. Head direction cells (C) inform the

animal in which directio-n it is heading. a bSt ra Ct S pa CeS

3
T i f ' :
// /fp\ S diiobs ik Gt » They are thought to allow us to

“Entorhinal cortex

. g A
,-/// ‘:, - ‘:
,e*""'/ S \ \ o B Distance (speed)
i — P "li"‘c"\' > ' — e C Direction . . . .
 Did the brain discovered Fourier
P> Grid cells .
/ In 2005 May-Britt and Edvard Moser discovered a n a |yS I S?
grid cells, located in the entorhinal cortex (D). Unlike
-— place cells, active at only one location, each grid cell
- - becomes active in multiple locations in an environment,
which are evenly spaced in a repeating hexagonal pattern.
This creates a system of coordinates with a metric, similar
to the latitude-longitude grid we use in maps. Increaslng Abstractlon
- Physical Social information Social
Grid cells help determine location ... ... similarly to systems . . (]
: space in physical space space fg\
Diffsrentgrfifd celis y L ~ ° I(;\Passimitlar wa:z, in More
produce differen | : systems the
hexagonal patterns at >« » '/. f\ ' S‘“e distance measuring _ Q
different scales and . >4 { \ of one satelite Se|f
shifted with respect to e » '\._ / b alone can't pinpoint
the grids of other cells. - Salell e Locatlon a location, but the Power
Using the overlapping e . YO ". ¥ overlap of at last
grids of several cells, * o - , \ three satelites is y
location can be ‘/ ‘\ > @ _ used to pinpoint
uniquely identified by o\ 5 By Satellite the exact location L
coincident firing of b 2 of a receiver. eSS
multiple grid cells. e i X
Close = = Distant
Affiliation

Source: How do we Find our Way? Grid Cells in the Brain, by May-Britt Moser nfographic by
Published by Frontiers for Young Minds, Sep. 2021 S5W Infographic



