On Heads and Tails

Foundations seminar

Raul Vicente, 11th March 2025









Location-
related brain
cells studied in
rats have also
been found in
the human brain.

Place cells

In 1971, researchers John O'Keefe and John Dostrovsky
worked with rats to discover place cells. Located in the
hippocampus region of the brain, different place cells are
acitvated only at specific locations. They tell us where we are.
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To navigate successfully in the environment, you need to
~know your starting position, walking direction, and speed.
" In addition to place cells (A), other cell types have a unique
“role in navigation. Speed cells (B) increase their activity when
. an animal moves faster, helping it calculate the distance it
passes when it moves. Head direction cells (C) inform the
animal in which direction it is heading.
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Grid cells

In 2005 May-Britt and Edvard Moser discovered
grid cells, located in the entorhinal cortex (D). Unlike
place cells, active at only one location, each grid cell
becomes active in multiple locations in an environment,
which are evenly spaced in a repeating hexagonal pattern.
This creates a system of coordinates with a metric, similar

to the latitude-longitude grid we use in maps.
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In 2005 May-Britt and Edvard Moser discovered
grid cells, located in the entorhinal cortex (D). Unlike
place cells, active at only one location, each grid cell
becomes active in multiple locations in an environment,
which are evenly spaced in a repeating hexagonal pattern.
This creates a system of coordinates with a metric, similar
to the latitude-longitude grid we use in maps.

Grid cells help determine location ...

Different grid cells
produce different
hexagonal patterns at
different scales and
shifted with respect to

the grids of other cells.

Using the overlapping
grids of several cells,
location can be
uniquely identified by
coincident firing of
multiple grid cells.

... similarly to GPS systems

Satellite

Satellite

In a similar way, in
GPS systems the
distance measuring
of one satelite
alone can't pinpoint
a location, but the
overlap of at last
three satelites is
used to pinpoint
the exact location
of a receiver.
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Artificial neural networks

Place cell centers
A | = Simulated trajectory
== Decoded position
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Sorscher et al 2023, Neuron



Artificial neural networks
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Born 1939, USA Born 1963, Norway Born 1962, Norway
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How do these neurons activate on a hexagonal pattern
and
what is their functional role?



Classical theory



Path integration
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Classical theory of grid cells

- Toroidal connectivity of neurons
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Classical theory of grid cells

- Toroidal connectivity of neurons

- Bump of activity updated by ideothetic (velocity) cues
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Classical theory of grid cells

- Toroidal connectivity of neurons

- Bump of activity updated by ideothetic (velocity) cues
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Classical theory of grid cells

- Toroidal connectivity of neurons
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Classical theory of grid cells

- Toroidal connectivity of neurons

- Bump of activity updated by ideothetic (velocity) cues

- Kantian view of spatial sense (innate, “must be found in us prior any perception of an object”)
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Difficulties for the classical theory:
effects of the environment shape



Environment effects

0.78

- Size - Shape



A different type of theory
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Reaction-Diffusion (2D)

ur = yf(u,v) + Vau, v =ygu,v)+dVv,

(n-V) (Z) =0, ronodB; u(r,0), v(r,0) given,

0B



Reaction-Diffusion (2D)

ur = yf(u,v) + Vau, v =ygu,v)+dVv,

(n-V) (Z) =0, ronodB; u(r,0), v(r,0) given,

0B

1 0
w; = yAwW + DV?w, D=(O d)



Reaction-Diffusion (2D)

ur = yf(u,v) + Vau, v =ygu,v)+dVv,

(n-V) (Z) =0, ronodB; u(r,0), v(r,0) given,

0B

1 0
w; = yAwW + DV?w, D=(O d)

VW + k*°W = 0, m-V)W=0 for ronodB

Fourier basis (generalized)



Reaction-Diffusion (2D)

ur = yf(u,v) + Vau, v =ygu,v)+dVv,

(n-V) (Z) =0, ronodB; u(r,0), v(r,0) given,

0B

wr, 1) =) cre’ Wi(r)

1 0
w; = YAW + DV?w, D=(O d) *

VW + k*W = 0, m-VW=0 {for rondB

Fourier basis (generalized)



Reaction-Diffusion

Re)

Wavenumbers
of unstable modes
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(b) d < d. i d



Reaction-Diffusion

Re)

Wavenumbers
of unstable modes

w = w (c) w = w" (d) (a)

d> dc White noise
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Grid pattern -> Superposition of Fourier modes (Eigenfunctions of Laplacian)

Grid scale -> Eigenvalue associated to contributing eigenfunctions



Neural models



1-population Neural field model
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1-population Neural field model

dn
= f(n)
dt Excitatory/Activation
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2-population Neural field model
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Boundary conditions!



Grid pattern -> Superposition of Fourier modes (Eigenfunctions of Laplacian on the
domain)

Grid scale -> Eigenvalue associated to contributing eigenfunctions





https://www.youtube.com/watch?v=tFAcYruShow

Boundary conditions

- Developmentally: Border cells -> Place cells -> Grid cells

A B C D
Place cell Head direction cell Gnd cell Border cell

Current Biology



Generalisation of Fourier Analysis



Research hypothesis

Grid cells = Fourier basis for the 2D environments




Fourier generalization to manifolds
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Generalised Fourier

2D Sphere 2D Torus




Generalised Fourier

frequencv decomposition

» Basis set to represent
functions

 Filtering of scales
« Smoothing and interpolation

« Spectral coordinates
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Spectral coordinates

Mz’t,j — Z }\f ¢l (mz )¢l (xj) M is related to graph Laplacian
[
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Spectral geometry

Relation between geometry/topology and
eigenvalues and eigenfunctions of the Laplacian operator



Representation Theory

Non-Abelian groups

Elements of the group are represented
by invertible matrices and the group operation
by matrix multiplication

Pontryagin Duality
Functions on locally compact Abelian groups (Z5)

Extension of Fourier for functions on groups
based on Pontryagin duality (group characters
generalize complex exponentials as basis functions)

A

G :=Hom(G,R/7Z)

x:G->UQD) | x(g18) =x(€)x(g)

(0% =J FO7(O)du(x)
G

'\

Spectral Geometry

Relation between geometry/topology and
eigenvalues and eigenfunctions of the Laplacian operator (Quantum mechanics)

Graphs

Relations between graph properties and spectra

of the graph Laplacian

Hypercube

Fourier decomposition of Boolean functions:
eigenvectors of Graph Laplacian are the

characters of Zg

fi(=1,11" > R

=Y S, s =[]~

SC[n]

7S = {fixs)

Classical Fourier Analysis
Functionson R R/Z Z Z,

Representing functions as sum of
trigonometric functions

f&) = J Fx)e 2755 x

eSS

Manifolds

(M, g) — Spec(M, g)

Eigenfunctions as minimizers of
Dirichlet form

Flat torus (Lattices) R"/A

Poisson type formula relating the norms
of lattice points (lengths of closed geodesics)
to frequencies (eigenvalues)

Vol(A) Y el = ) p=dalls

(412

AEA

AEA*

Geodesic Flows

Relation between geometry/topology a
and periodic geodesics (Classical mechanics)

Manifolds with boundary

Billiard dynamics



9.3.3 Facts

The Laplacian on any compact Riemannian manifold provides us with all the
tools of Fourier analysis on our Riemannian manifold. Let us call a function
¢ an eigenfunction with eigenvalue the number A if

Af = \f.

The set of all eigenvalues of A is an infinite discrete subset of R™ called the
spectrum of A

Spec (M) ={ )} ={0< 1 <X <...} (9.5)

with A\x tending to infinity with k.
For each eigenvalue \;, the vector space of eigenfunctions ¢ satistying

Af = Nif

is always finite dimensional and its dimension is called the multiplicity of \;.
Once we have a basis of the eigenfunctions with this eigenvalue written out,
it is trivial to find an orthonormal basis

{0k}

(where & runs from 1 to the multiplicity) of eigenfunctions. Here the orthonor-
malcy is to be understood for the global scalar product

(F9) L2y = /M fa.



As for classical Fourier series, any reasonable function

f:M =R

ai=/Mf¢z'

and f is recovered from these coefficients by the converging series
f=) aip;.
i

In the same spirit, the scalar product of two functions is the sum of products
of their coefficients:

has Fourier coefficients

where



9.3.4 Heat, Wave and Schrodinger Equations

We will follow the same steps that we did in §1.8: defining heat, wave and
Schrodinger equations on Riemannian manifolds. The heat equation for the
heat f(m,t) at time ¢t at a point m of the Riemannian manifold M is

of

A vl (9.6)
The wave equation for the height f(m,t) of the “water” after time t at a
point m 18
0/
o
where it M were a surface, you would consider M covered in a thin sheet
of water, or for M of three dimensions, M is a place through which sound
is propagating. The wave equation can also be considered as describing the
manifold M as a vibrating membrane object. Finally the Schrodinger equa-
tion uses complex valued functions and is written

a (9.7)

3¢ 9
A zﬁ(% (9.8)

where 2 = v —1 and A is Planck’s constant.



To solve these equations, at least formally, one uses the same trick as in
§51.8.1. To solve such an equation depending both on time ¢ and a point m &

M, the initial idea is to use the fact that, roughly by the Stone—Weierstraf
approximation theorem, we need only to consider product functions

f(m,t) = g(m)h(t) .

One will subsequently consider series of them (as in the theory of Fourier
series). Look for example at the heat equation. The function f = gh satisfies
the heat equation precisely when the functions g and h satisty

Ag h’
e 9.9
e 9.9)
where o
h/(t) = —
() i

is the usual derivative.
Since the first fraction depends only on the point m € M and the second
only on the time ¢ their common value has to be a constant, call it A. Then

the function
g: M —R

is an eigenfunction of A with eigenvalue A\, while h is an exponential decay
at rate \. If all eigenfunctions and eigenvalues of A are known, we can then
solve the heat equation explicitly. Note that the time dependence h(t) is

e~ for the heat equation
h(t) = < e for the Schrédinger equation

eVt for the wave equation.



Another way to write the solution f(m,t) with initial temperature f(m,0)
is to compute the Riemannian Fourier series

f(ma 0) - Z Ak Pk
k—1
and then -
f(m,t) =) axpr(m)e
k=1

For the wave equation, the fundamental solution similar to equation 9.10
requires imaginary terms, l1.e.

e’i\/ Art

which are linear combinations of
COS (\/ )\kt) and sin (\/ )\kt) .

But the dramatic difference between the heat equation and the wave equation
is that waves demand not converging series, but distributions. Heat spreads
out uniformly with time, while waves bounce up and down forever. This ma-

o




There are very few examples where the spectrum or the eigenfunctions
can be determined explicitly. Two old standards are rectangles and disks.
In both cases, separation of variables disentangles the eigenfunctions. Using
again the Stone—Weierstrafl theorem, and because the boundary condition
agrees with the separation, on a rectangle one need only look for product
functions f(x,y) = g(«)h(y), and there will be no other eigenfunctions. If
the rectangle has side lengths a and b respectively, then the eigenfunctions

are
TN ™Y

In —— d Z1
— sin— (1 721

where m and n are any integers, yielding the set of eigenvalues

2 2
. 1

i.e. to obtain an eigenvalue at most A we need m and n to be integer points
inside a certain ellipse. We will see below that a simple expression yields
an easy first order approximation of N(\) when A\ — o0, but the second
order term in A is related to deep number theory and is still not completely
understood today. It is believed that the number of integers m,n with

sin

e

is asymptotic to m2\? + O ()\€+1/2) as A\ — o0, for any € > 0, but there is
still no proof. This is called the Gauf} circle problem; see §31.8.5. However, it
is known that 72\ + O ()\1/ 2) is too small.



How about a second order a;')proximati_onj? In 1954, Pleijel got the next
order approximation. In his paper Kac 1966 [775], Kac works quite hard to
get the third term, guessing that the right formula should be:

F—(1—7r)

ie_ L Area(D) length(0D) 1
ry 27t 27t §

where r is the number of holes inside D. The second term is Pleijel’s. Note
that can one hear the area and the perimeter of D, hence the isoperimetric
inequality yields again the fact that disks are characterized by their spectrum.

Kac could only prove the third term for polygons. It was proven the
next year, 1967, in the very general context of Riemannian manifolds with
boundary by McKean and Singer in their fundamental paper of 1967 [910].
You will read much more about it in chapter 9.

® 9 )

Fig. 1.97. One can hear the number of holes

The Tauberian theorem above shows that the first terms of N(\) and
Z,fil exp(—A;t), can each be acquired from the other. But this does not
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CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York
To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

“La Physique ne nous donne pas seulement
'occasion de résoudre des probléemes . . ., elle nous
fait presentir la solution.” H. POINCARE.

Before I explain the title and introduce the theme of the lecture I should like
to state that my presentation will be more in the nature of a leisurely excursion
than of an organized tour. It will not be my purpose to reach a specified des-
tination at a scheduled time. Rather I should like to allow myself on many
occasions the luxury of stopping and looking around. So much effort is being
spent on streamlining mathematics and in rendering it more efficient, that a
solitary transgression against the trend could perhaps be forgiven.




i= Rayleigh—Faber—Krahn inequality %A 1language
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From Wikipedia, the free encyclopedia

In spectral geometry, the Rayleigh—Faber—Krahn inequality, named after its conjecturer, Lord Rayleigh, and two individuals who
independently proved the conjecture, G. Faber and Edgar Krahn, is an inequality concerning the lowest Dirichlet eigenvalue of the
Laplace operator on a bounded domain in R™, n > 2.1l |t states that the first Dirichlet eigenvalue is no less than the corresponding
Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore, the inequality is rigid in the sense that if the first
Dirichlet eigenvalue is equal to that of the corresponding ball, then the domain must actually be a ball. In the case of n = 2, the
iInequality essentially states that among all drums of equal area, the circular drum (uniquely) has the lowest voice.
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From Wikipedia, the free encyclopedia

In spectral geometry, the Rayleigh—Faber—Krahn inequality, named after its conjecturer, Lord Rayleigh, and two individuals who
independently proved the conjecture, G. Faber and Edgar Krahn, is an inequality concerning the lowest Dirichlet eigenvalue of the
Laplace operator on a bounded domain in R™, n > 2.1l |t states that the first Dirichlet eigenvalue is no less than the corresponding
Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore, the inequality is rigid in the sense that if the first
Dirichlet eigenvalue is equal to that of the corresponding ball, then the domain must actually be a ball. In the case of n = 2, the
inequality essentially states that among all drums of equal area, the circular drum (uniquely) has the lowest voice.

Do grid cells for circular environments have lowest spatial frequency?



Spectral geometry -> bounds on ratios of eigenvalues

- Dependence on environment shape

- Bounds on grid scale ratios

Scale ratio
- N DN O 0O N

M2/1

Average
ratio: 1.421

N
o
=

M4/3

x1.42 x1.42 x1.42 x1.42

Module: 1 2 3 4

VA

Probability

Grid scale

Although the set point is different for
different animals, modules scale up, on
average, by a factor of ~1.42 (sqrt 2).

Stensola et al. Nature, 492, 72-78 (2012)
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