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Shannon’s Channel Coding Theorems

• A code is a mapping from the
set of all vectors of length k 
to a set of vectors of length n
(over alphabet Σ)

• Given a channel S, there is a 
quantity C(S) called channel 
capacity Claude Shannon 

(1916-2001)



Shannon’s Channel Coding Theorems

For any rate R < C(S), there exists an infinite sequence of block 

codes 𝐶𝑖 of growing lengths 𝑛𝑖 such that 
𝑘𝑖

𝑛𝑖
≥ 𝑅 , and there exists 

a coding scheme for those codes such that the decoding error 
probability approaches 0 as 𝑖 → ∞.



Shannon’s Channel Coding Theorems

For any rate R < C(S), there exists an infinite sequence of block 

codes 𝐶𝑖 of growing lengths 𝑛𝑖 such that 
𝑘𝑖

𝑛𝑖
≥ 𝑅 , and there exists 

a coding scheme for those codes such that the decoding error 
probability approaches 0 as 𝑖 → ∞.

Let R > C(S). For any infinite sequence of block codes 𝐶𝑖 of 

growing lengths 𝑛𝑖 such that 
𝑘𝑖

𝑛𝑖
≥ 𝑅 , and for any coding scheme 

for those codes, the decoding error probability is bounded away 
from 0 as 𝑖 → ∞.
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Parameters to Consider

Other parameters to consider: 

• Speed of convergence Pr (err) → 0 as 𝑛 → ∞. 
Low error probability for short lengths is 
needed!

• Time complexity of encoding and decoding 
algorithms. Structured codes are needed!



Minimum Distance

• The Hamming distance between 
𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑛 ,
𝑑 𝑥, 𝑦 , is the number of pairs of symbols 
(𝑥𝑖 , 𝑦𝑖), such that 𝑥𝑖 ≠ 𝑦𝑖.

• The minimum distance of a code C is 
𝑑 = min

𝑥,𝑦∈𝐶,𝑥≠𝑦
𝑑 𝑥, 𝑦



Linear Codes

• A code 𝐶 over field F is a linear [n, k, d] code if there 
exists a matrix 𝐻 with n columns and rank n − k such 
that 

𝐻 ⋅ 𝑐𝑇 = 0𝑇 ⟺ 𝑐 ∈ 𝐶.

• The matrix H is called a parity-check matrix.

• The value k is called the dimension of the code 𝐶.

• The ratio R = k/n is called the rate of the code 𝐶.

• All vectors (codewords) of 𝐶 are exactly all linear 
combinations of rows of a k × n generator matrix G.

𝑘 − 1



Challenge

• Large values of R = k/n correspond to high
efficiency of transmission.

• Large values of d correspond to high error
resilience.  

We want to make k and d as large as possible at 
the same time. 



Bounds

• Sphere-packing (Hamming) bound: 

෍

𝑖=0

⌊
𝑑−1
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𝑖
𝑞 − 1 𝑖 ≤ 𝑞𝑛−𝑘

• Singleton bound: 

d + k – 1 ≤ n.



Sphere-packing idea
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Sphere-packing idea

Decoding



Hamming Codes

• The m x n binary parity-check matrix: 

𝐻 =
1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

Here: n = 2𝑚 − 1, k = 2𝑚 −𝑚 − 1, 𝑑 = 3.

• Attains the sphere-packing bound.
• Optimal trade-off between the parameters

• Used in DRAM memory chips and satellite
communications. 



Reed-Solomon Codes

• Let 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝐹 be n distinct nonzero
elements of the final field 𝐹. 

• The generator matrix: 

𝐺 =

1 1 … 1
𝛼1 𝛼2 … 𝛼𝑛
𝛼1
2 𝛼2

2 … 𝛼𝑛
2

⋮ ⋮ ⋱ ⋮

𝛼1
𝑘−1 𝛼2

𝑘−1 … 𝛼𝑛
𝑘−1

• Attains the Singleton bound: n = d + k – 1
• Optimal trade-off between the parameters



Reed-Solomon Codes (cont.)

• Encoding: 

𝑥0𝑥1…𝑥𝑘−1 ⋅

1 1 … 1
𝛼1 𝛼2 … 𝛼𝑛
𝛼1
2 𝛼2

2 … 𝛼𝑛
2

⋮ ⋮ ⋱ ⋮

𝛼1
𝑘−1 𝛼2

𝑘−1 … 𝛼𝑛
𝑘−1



Polynomial Interpolation Viewpoint

• Input vector [𝑥0𝑥1…𝑥𝑘−1] is associated with
the polynomial 

𝑃 𝑧 = 𝑥𝑘−1𝑧
𝑘−1 + 𝑥𝑘−2𝑧

𝑘−2 + 𝑥1𝑧 + 𝑥0

• Encoding is an evaluation: 
𝑃 𝛼1 , 𝑃 𝛼2 , … , 𝑃 𝛼𝑛

• Decoding is an interpolation of the polynomial
of degree ≤ 𝑘 − 1



Reed-Solomon Codes are Used in:

• Wired and wireless 
communications 

• Satellite communications

• Hard drives and 
compact disks

• Flash memory devices



Application of Reed-Solomon Codes

• Shamir’s Secret-Sharing Scheme ’79

• n users 

• 1 key (element of F)

• Any coalition of < 𝑡 users 
does not have any information 
about the key 

• Any coalition of ≥ 𝑡 users 
can recover the key Adi Shamir



Shamir’s Secret Sharing Scheme
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Shamir’s Secret Sharing Scheme



Shamir’s Secret Sharing Scheme (cont.)

• Select randomly  𝑥1, 𝑥2, … , 𝑥𝑘−1. Let 𝑥0 be a 
secret key. Construct a polynomial 

𝑃 𝑧 = 𝑥𝑘−1𝑧
𝑘−1 + 𝑥𝑘−2𝑧

𝑘−2 + 𝑥1𝑧 + 𝑥0
• Give (𝛼𝑖 , 𝑃 𝛼𝑖 ) to user 𝑖

• Large coalition has enough points to 
interpolate the polynomial  

• Small coalition has no information about the 
polynomial 



List-decoding of Reed-Solomon Codes
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List-decoding of Reed-Solomon Codes

• Sudan ‘97, Guruswami ‘99, Vardy-Parvaresh ‘05, 
Guruswami-Rudra ‘06

Madhu Sudan Venkatesan Guruswami



List Decoding of RS Codes

Voyager 1 – the first manmade 
object to leave the Solar System. 
Launched in 1977. 



Low-Density Parity-Check Codes
• Gallager ’62

• Urbanke, Richardson and Shokrollahi ’01

• Parity-check matrix H is sparse

• Performance close 
to channel capacity

• Decoding complexity 
linear in n

1
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1

2

3H  =  
1 1 1 0 0
0 1 0 1 1
0 0 1 0 1

Tanner graph:



Low-Density Parity-Check Codes

• Belief-propagation decoding algorithm 
(message-passing algorithm)

(Pr(0),Pr(1))



Belief-Propagation Algorithm

Pr(0) = 0.2, Pr(1) = 0.8

Pr(0) = 0.4, Pr(1) = 0.6



Low-Density Parity-Check Codes

Pr(0) = 0.2, Pr(1) = 0.8

Pr(0) = 0.4, Pr(1) = 0.6

Pr(0) = 0.56, Pr(1) = 0.44



Reed-Solomon Codes are Used in:

• Wired and wireless 
communications 

• Satellite communications

• Hard drives and 
compact disks

• Flash memory devices



LDPC Codes are Used in:

• Wired and wireless 
communications 

• Satellite communications

• Hard drives and 
compact disks

• Flash memory devices



Emerging Applications 
of Coding Theory



Flash memories

• Easy to add electric charge, 
hard to remove

• The charge “leaks” with 
the time

• Neighboring cells influence 
each other

Flash memory 
cell













Flash memories

• Rank modulation

• The information is represented using relative 
levels of charge, invariant to leakage

• Coding over permutations 

Jiang, Mateescu, Schwartz, Bruck ‘2006



Flash memories



Networking

• Rateless Codes

• A. Shokrollahi ‘2004
• Used in DVB-H standard for IP datacast for handheld devices



Networking

• Rateless Codes
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Networking

• Rateless Codes

• Possible solution: ARQs (retransmissions) – slow!  
• Alternative: large error-correcting code



Networking

• Rateless Codes



Network coding

• Butterfly network

x y

Ahlswede, Cai, Li and Yeung, 2000



Network coding

• Butterfly network

x y

x

y

y

y



Network coding

• Butterfly network

x y

x

x

x

y



Network coding

• Butterfly network
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Network coding

• The number of bits deliverable 
to each destination is equal 
to min-cut between source and
each of destinations

• Avalanche P2P Network 
(Microsoft, 2005)

• Experiments for use in 
mobile communications

x y



Distributed Storage

• Huge amounts of data stored by big data companies 
(Google, Amazon, Facebook, Dropbox)

Facebook data center in Oregon Server room at 
Wikipedia data center



Distributed data storage

x y x+ y

Dimakis, Godfrey, Wu, Wainwright, Ramchandran ‘2008



Distributed data storage
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Distributed data storage

x y x+ y



Distributed data storage



Distributed data storage

• Classical error-correcting codes can be employed
• Local correction is needed (using few other servers) to 

facilitate the correction



DNA-based Data Storage



Error Correction in DNA Storage

• Four amino acids: A, T, G, C

• Mechanisms for error correction are required

March 2018: University of Washington and Microsoft 
demonstrated storage and retrieval of 200MB of data.

ATGCCGA

ATGC

CCG

CGA

GCCA



Thanks!


