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Distributed Storage System (DSS)

e Cloud storage and computing systems of Google, Amazon,
Facebook, Dropbox, Al companies etc. need to be reliable
e Data is stored redundantly to prevent data loss: replicated into

copies / coded using linear combinations
o Storage node (server/rack) repair from
e few other nodes (locality), with alternatives (availability)
e by computing, transferring (bandwidth) a small amount of data

e Updating data economically

e Serving data in parallel from small sets of nodes, with
alternatives — “distributed service system”, service rate region,
batch codes

e Private Information Retrieval (PIR) — PIR codes

e Multiparty computation (with or without privacy)

e Coded caching



Errors vs erasures
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(A) Binary symmetric channel (BSC) (B) Erasure channel

Figure: Encyclopedia of Physical Science and Technology (Third Edition), 2003

e Distributed storage systems (DSSs) use erasure codes, as a
defunct node is recognized by the DSS as such

e DSSs are typically linearly coded:
eg. (ab)(§91)=(abatb), ie
data symbols a, b stored in three servers as a, b,a XOR b, so
a<a, a<b+(a+b),and b« b, b+ a+(a+b)



Regenerating codes
Repair bandwidth
—— Exact-repair bound

—— Cutset bound

Minimum Storage Regenerating (NVSR)

e

Minimum Bandwidth Regenerating (MBR)

Node capacity

Figure: PhD thesis of Junming Ke
e Trade-off between redundancy and bandwidth of node repair:

information-theoretic cutset bound (blue curve)

e Regenerating codes are optimal, i.e. on the blue curve

e Convex combinations in cutset region by “time-sharing”

e Ke, Hollmann, Riet '24 found a practical, functional-repair
regenerating code in blue corner point other than MSR, MBR



Combinatorial Designs, Finite Geometry

Chase Everest Rubble
Chase Zuma

Zuma Marshall Rubble
Chase Marshall Rocky
Zuma  Rocky Everest
: Marshall Everest

Rocky Rubble

e Fano plane: first finite projective plane PG(dim = 2,q = 2)
e First combinatorial block design: 2 — (7,3, 1) design
t— (v, k,\)
Each t of the v points contained in = X of the blocks, size k
lines



Hamming code: update performance

(abcdatbtd btctd atbtc)

1000101

(abcd) (8%?8%%%) :(abcda+b+db+c+da+b+c)
0001110

(data symbols) (g?::{fiior) = ( coded symbols )
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Hamming code: update performance

(a bcdatbtd bt+c+d a+b+c)
Updated a

100
(s0e0) (48
000

(data symbols) (g n rf.

r) = coded symbols )
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Hamming code: update performance

(abcdatbtd btctd atbic)
Updated a twice

Can aggregate updates:

a+A1+A0r = a+(A1+Ar)

100
(s0e0) (48
000

(data symbols) (g n rf.';or) = coded symbols )
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Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(to10 1 0 o )

Each circle parity-check:

has sum 0 mod 2

= ( coded symbols )
7



Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(to11 1 0 o )

Error:  Sum wrong in

pink, violet circle

= ( coded symbols )
7



Hamming code: errors and erasures
(abcdatbtd btctd atbtc)
(to10 1 0 o )

Error:  Sum wrong in
pink, violet circle

Change bit in pink, violet,

not green

= ( coded symbols )
7



Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(1110 1 0 1)

Two errors. Sum wrong

in pink, violet circle

= ( coded symbols )
7



Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(1111 1 0 1)

Two errors. Sum wrong
in pink, violet circle
Change bit in pink, violet,

not green

Repair failed!

(abcd)(

(data symbols) (generator) = ( coded symbols )

o000
—OOO
HORE
HEERO
ORHEF

0
5 ) = (abcdatbtd btctd atbtc)
0

OOOR

matrix
7



Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(to10 1 0 o )

Each circle parity-check:

has sum 0 mod 2

= ( coded symbols )
7



Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(1e10 1 0 e )

Two erasures

100
(s0c0) (§48
000

(data symbols) (gn':;a;fiior) = ( coded symbols )

7



Hamming code: errors and erasures

(abcdatbtd btctd atbtc)
(to10 1 0 e )

Two erasures

Recover bit from pink

100
(s0c0) (§48
000

(data symbols) (gn:];a;?iior) = ( coded symbols )

7



Hamming code: errors and erasures

(abcdatbtd btc+d atbtc)
(to10 1 0 1)

Two erasures
Recover bit from pink

Recover bit from green

100
<abcd>(83?
000

data symbols generator) _ coded symbols
matrix

7



Simplex code: the dual of Hamming code

(a b ¢ b+c at+c a+b a—i—b+c)

More parity-checks

1000111
(abc) 0101011 :(abcb+ca+ca+ba+b+c)
0011101

rowl: 1101000
Parity- ﬁgﬂ% 03190100 generator ((TOWl—row4: 1100101
e | e 9883808 | e (e 011100t)
32690801



Simplex code: the dual of Hamming code

(a b ¢ b+c a+c a+b a+b+c)

More parity-checks
Corrects any 3 erasures

1000111
(abc) 0101011 :(abcb+ca+ca+ba+b+c)
0011101

rowl: 1101000
Parity- ﬁgﬂ% 0319100 generator ((TOWl—row4: 1100101
s | e 9883108 | e (e 01110t)
31698801



Simplex code: the dual of Hamming code

(a b ¢ b+c a+c a+b a—|—b+c)

More parity-checks
Corrects any 3 erasures
Stopping set / set with-

out tangents

1000111
(abc) 0101011 :(abcb+ca+ca+ba+b+c)
0011101

rowl:
row?2:

Parity- [ rows:

checks rows:

row6:
rowT:

rowl—row4: 1100
generator (row2—r0W41 0111
matrix row3—row4: 0010

HOFOOOK
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Distributed service system

Figure: Vitaly Skachek
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Service rate region
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Figure: Service Rate Region: A New Aspect of Coded Distributed System Design, TIT, 2021, by Aktas,

Joshi, Kadhe, Kazemi, Soljanin



Definition of Batch Codes

e Proposed in the crypto community for:

e Load balancing
e Private information retrieval

Definition [Ishai, Kushilevitz, Ostrovsky, Sahai 2004]

An (k,N,t,n,v)s batch code over ¥ encodes any

a= (a1, a», - ,ar) € XX into n strings (buckets) c1,c2,--- , c,
over ¥ of total length N, such that Viy, i, -+ , iy € [k], t users can
retrieve aj,, aj,, - , aj,, resp., by reading < v symbols from each

bucket, s.t. aj, is recovered from symbols read by /-th user alone

® o Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,”, Proc.

36th ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.

11



Motivation

e Private information retrieval (PIR) codes for multi-server
private information retrieval to reduce the storage overhead
[Fazeli, Vardy, Yaakobi]

e Batch codes for server load balancing for hot data [Ishai,
Kushilevitz, Ostrovsky, Sahai]

e Primitive multiset batch codes / PIR codes: < t clients access
pairwise disjoint sets of servers to retrieve
e any (aj,..., a;,), aj, € [k] for batch codes
e any (aj,...,a;), i € [k] for PIR codes

e A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead: coding instead of replication”,
2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, pp. 2852-2856, 2015.

e Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,”, Proc. 36th
ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.
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Example: simplex code k =3

1 00 01 11
Generator

0101011 Code
matrix 0011101 i
X1 X2 X3 Xx®x3 x1Ox3 x1DOx2 x1Dx2DXx3

=N =2 =¥3 = Ya

X1

i
’ l

Y2

X2
. e X
=

Y3

X3
X3
Ya

T T

(3-left-regular) bipartite graph (3-uniform) hypergraph H(V, E)

G(E,V,S)
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Linear

(computational) PIR/batch codes

x = (x1,x2,- -+ , xx) information string
y = (,y2, -, ¥n—k) encoding of x - redundant symbols
write y;, i € {1,--- ,n—k} as y; = Zjlle gj.iXj

Generator matrix: [/|G] where G = (gj7;>

jelklieln—k]
the encoding is [x|y] = x[I|G]
E ={x1,...,xc} (information symbols)
V ={y1,...,¥n—k} (redundant symbols)

{xj,yi} € S (an edge) iff gj; # 0
bipartite graph G(E, V/,S) (left part E, right part V, edge set
S); hypergraph H(V, E)

14



Graph-based PIR/batch codes

e [Rawat, Song, Dimakis, Gal]: if G(E, V,S) has girth (length
of shortest cycle) > 6, resp. > 8 and mindeg(x;) > t — 1 for
x; € E then graph gives t-user PIR code, resp. batch code

e Call the codes graph-based Berge 2-cycle

X X;
—
4-cycle —
—=0 i
XN7

Xi

e O
Yk o Ym A Xk
—
6-cycle —
Xk X/
Xm

Yi

Berge 3-cycle

o A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, “Batch codes through dense graphs without
short cycles”, IEEE Trans. Information Theory, vol. 62, no. 4, pp. 1592-1604, 2016.
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Asynchronous batch code model

e Synchronous (classical) - serve t requests at same time

e Asynchronous (R., Skachek, Thomas) - stream of requests
Can start serving any new request whenever < t requests are
currently being served

asynch synch

e For any code C we have tmax  (C) < tmax (C)

e C = (simplex code k = 3)
=t (C) =4 i (C) =2
e For graph-based batch (and PIR) codes

goynch >min_left degree+1 [Rawat, Song, Dimakis, Gal]

e Observation (R., Skachek, Thomas): Graph-based (PIR and)

asynch

batch codes have t3x >min left degree+1

e A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, “Batch codes through dense graphs without
short cycles”, IEEE Trans. Information Theory, vol. 62, no. 4, pp. 1592-1604, 2016.
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Asynchronous batch code model - examples

Ex. 1: AA2B2B81B8BA132A812...

Ex. 2: Code [x1 x2 x1 & x2] (simplex code for k = 2).

o 0N _ 5 indeed:
e can serve x; and x; = x2 @ (x1 D x2);
e can serve xj and xz;
e can serve x; and xp = x1 @ (x1 B x2);
e cannot serve xq, x; and xi.
o But t2Y"P — 1 indeed:
e stream of requests: 112.. ;
e serve x; (st server);
e serve x; = x2 @ (x1 ® x2) (2nd and 3rd server);
e 1st server finishes serving;

e but incoming request x, cannot be served by 1st server only.

17



Hypergraphs and graph-based PIR/batch codes

e Remove edges to make G(E, V,S) (t — 1)-left-regular
Girth cannot decrease - no new cycles

e Corresponding (t — 1)-uniform (multi)hypergraph
(“(t —1)-graph”) H(V, E): identify e € E with {v|{e,v} € I}

e For PIR codes (bipartite girth > 6 or Berge girth > 3)
equivalently a 2-(|V/|, t — 1, 1) packing design. Asymptotically
optimal packing designs exist (for large enough |V/]).

e For batch codes (bipartite girth > 8 or Berge girth > 4) use
solution of “(3(t — 1) — 3, 3)-problem” (cf. “Ruzsa-Szemerédi
(6, 3)-problem”):

18



Hypergraph (6, 3)-problem

e [Brown, Erdés and Sés] H*"Y)(n — k; 1, s): max. number of
hyperedges of an (t — 1)-graph on n — k vertices whose no set
of K vertices contains s or more hyperedges (fixed t, x, s)

e [Ruzsa and Szemerédi] essentially solved first open case
H®)(n — k;6,3), known as the (6, 3)-problem

e [Erdés, Frankl and R&dl] essentially found
H 1 (n— k;3(t — 1) — 3,3), solved (3(t — 1) — 3, 3)-problem
We applied their solution to graph-based batch codes

e W. G. Brown, P. Erdés, and V.T. Sés, “Some extremal problems on r-graphs”, New Directions in the
Theory of Graphs, 3rd Ann. Arbor Conference on Graph Theory, Academic Press, pp. 55—63, 1973.

e W. G. Brown, P. Erdés, and V.T. Sés, “On the existence of triangulated spheres in 3-graphs and
related problems”, Periodica Mathematica Hungaria, vol. 3, pp. 221-228, 1973.

e |.Z. Ruzsa, E. Szemerédi, “Triple systems with no six points carrying three triangles”, Coll. Math. Soc.
Janos Bolyai, no. 18, pp. 939-945, 1978.

e P. Erdés, P. Frankl, V. R&dl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121,
1986.

19



Hypergraph (6, 3)-problem

e PROPOSITION (Riet, Skachek, Thomas):
HED(n— k; 3(t — 1) — 3, 3) = BN (n— k; 4)

where B(t=1)(n — k; 4) is max. number of hyperedges in a
(t — 1)-graph on (n — k) vertices with Berge girth > 4
e Proof outline. A (t — 1)-graph with no 3 hyperedges

contained in any set of 3(t — 1) — 3 vertices, can be modified
slightly to have no Berge 2- or 3-cycle. A (t — 1)-graph with
no Berge 2- or 3-cycles already has no 3 hyperedges contained
in any set of 3(t — 1) — 3 vertices

o P. Erdds, P. Frankl, V. Rédl, “The asymptotic number of graphs not containing a fixed subgraph and a

problem for hypergraphs having no exponent”’, Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121,
1986.

20



Erdds, Frankl and Rodl construction

e Arrange vertices as |(n — k)/(t — 1) |-by-(t — 1)-grid.
Hyperedges are lines of t — 1 points with restricted slopes:
Avoid 3-cycles (triangles):

3 slopes, 3 elements (here 4,3,2) of (t — 1)-element arithmetic
progression might give rise to a Berge 3-cycle

21



Erdds, Frankl and Rodl construction

[Behrend] constructed a big subset of {1,2,..., N}
containing no 3-term arithmetic progression (a,a + b, a + 2b)

[Erdés, Frankl and Rédl] modified the contstruction, giving a
big subset A C {1,2,..., N}, containing no 3 terms of any

(t — 1)-term arithmetic progression

In the grid, use only lines with slopes from A

Obtain hypergraph H(V/, E) without (Berge) 2- or 3-cycles

The respective bipartite graph G(E, V, S) has girth > 8,
producing a graph-based batch code

e F.A. Behrend “On sets of integers which contain no three elements in arithmetic progression”, Nat.
Acad. Sci., no. 23, pp. 331-332, 1946.

e P. Erdds, P. Frankl, V. R&dl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”’, Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121,
1986.
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Erdés,

Frankl and Rodl construction and bound

Gives k = Q((n — k)>=¢) hyperedges for any € > 0

Reminder: there are n — k redundant symbols/vertices and

k = (n — k)>~¢ information symbols/hyperedges and t —1 > 3
Redundancy r = n — k = O(k'/(279))

[Erdés, Frankl and R&dl] use (early version) Szemerédi's
Regularity Lemma to bound number of hyperdges to

o((n — k)?), so lim -~ — oo for redundancy r of graph-based

Vk
batch codes

e J. Komlés, A. Shokoufandeh, M. Simonovits, and E. Szemerédi “The Regularity Lemma and Its
Applications in Graph Theory”, in: G. Khosrovshahi, A. Shokoufandeh, and A. Shokrollahi(eds)
“Theoretical Aspects of Computer Science”, Springer, pp. 84-112, 2002.

e P. Erdds, P. Frankl, V. R&dl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113-121,

1986.
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Caset—1=2

For 2-graphs (graphs) we need to avoid multiple-edges and
3-cycles

Max. number of edges in a graph on n — k vertices with no
triangles is L%J by Mantel's (Turan's) Theorem

The complete bipartite graph H(V, E) = K|(n—k)/2],[(n—k),/2]
attains this bound. Example: K34 :

/ \ \
Can construct respective bipartite graph G(E, V, S) which is
2-left-regular and has girth > 8

For graph-based batch codes for t = 3 thus redundancy

r:n—k:@(\/;)

24



Open questions

e [Rao, Vardy] proved redundancy r = Q(v/k) for PIR codes for
t=3. Thus this holds for t > 3 and for batch codes for t > 3
[Vardy, Yaakobi] showed for batch codes r = O(v/k) for
t =3,4and r = O(Vklogk) for t > 5
e Note gap for t = 4 between O(v/k) and w(Vk)

general /graph-based batch codes

e For t > 4 find asymptotics of optimal redundancy for
graph-based batch codes

e |Is there a gap for t > 5 between optimal redundancy of batch
codes (O(Vk log k)) and graph-based batch codes
(O(kY(=9)) and w(v/k))?

e Find good asynch. batch codes other than graph-based

e S. Rao and A. Vardy, “Lower Bound on the Redundancy of PIR Codes”, arXiv:1605.01869, May 2016.

e A. Vardy and E. Yaakobi, “Constructions of batch codes with near-optimal redundancy”, Proc. ISIT,
Barcelona, pp. 1197-1201, July 2016.
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Functional Batch Code Conjecture

On the Functional Batch Code Conjecture:

Introduction: data recovery, definitions of batch-type codes

Simplex code as batch code

e Functional Batch Code Conjecture and related results

Two results as corollary of Marshall Hall, Jr. 1952, “A
combinatorial problem on abelian groups”

e Ranbow matchings

Future directions

26



Data recovery

Encoding: data @ = (a1, ..., ax) stored as ¢ = (c1,...,¢) = aG

Recovering data:

G=|el & - & |

If) g =e=(0,...,0,1,0,...,0),
icl
that is, G - x; :eJ-T, then c - x; :a-G'X,:a-ejT,
SO Z Ci = aj.
icl
So property of interest Zg,- = e; depends on G and not on datal
icl

27



Serving a request

Definition

k x n matrix G can serve request sequence/multiset ry,..., ry of
(not necessarily distinct) vectors in T if
3 p/w disjoint column index sets I, ..., l; s.t. rj € (col’s |; of G)

Zie,jg,- =rj, forj=1,...,t over[F,
Codes are functional: V individual request r is for lin. comb.
T
ar = ajn +---+ agrk

of the data symbols

28



Example

G, =
2 01 1

1 01
] = [ elT EQT (e1 —|—62)—r

a— (31,32) — C = aG2 = (Cl, Co, C3) = (31,32731 + 32)

2-PIR:

e1,e; «— {1},{2,3} two same requests: one+two columns
2-batch:

e1, e «— {1},{2} two different requests: one+one column
2-functional-batch:

e, el + e +— {1}, {3}

e1+ ez er+ ey «— {1,2},{3}

29



PIR/batch code definitions

An encoder (= a generator matrix G) is

1. t-PIR

—

. a t-fold repetition of

a unit vector

. t-batch if G can serve 2. t unit vectors

an request
3. t-odd-batch yred

N
w

t odd-weight (not in

sequence
hyperplane) vectors

consisting of

N

4. t-functional-
batch

. t arbitrary vectors

Proposition

Any t-PIR code G (the most general, thus each of the previous)

generates a code with minimum distance at least t.

30



Simplex code

Binary simplex code, dimension k, length n = 2k 1,

k_
generator matrix Gy € szx(z 2

10 0 0
01 0 1

G,=/0001 - 1 1/|=|1" 27 37T ... (Qk_l)T
L0 0 0 O 1 1]

Has minimal distance 21, so “optimal” would be t = 2k—1,

31



Greedy does not always work (using only recovery sets size
<2)

1010101
G3=|0110011
0001111

t=2k"1=14

Request: ri1 =1, =2,r3=1,ry =2.

Serve ri =1 and rp =2 by {1} and {2} (cheapest).
Then r3 =1 by {4,5} or {6,7};

and ry =2 by {4,6} or {5,7}.

Not possible!

Use service {1}, {4,6},{2,3},{5,7}. 3



Balister, Gyéri, Schelp 2011 Conj.: ¥ multiset of vectors of F5,
size 2k=1 with sum 0, 3 partition of Fé into pairs with sums the
elements of the multiset. Still OPEN! Equivalent to:

Yamawaki, Kamabe, Lu 2017; Yohananov, Yaakobi 2022
“Hadamard solution version” Functional Batch Code Conj.: V
2k=1 requests from IE"2‘ can be served with recovery sets size < 2,

all but < 2 size = 2. l.e. G is 2k~ I-functional-batch.

Hollmann, Khathuria, R., Skachek 2023: G can serve every
request of 251 vectors of odd weight (or outside a hyperplane).

Lemma in Lember, R. 2024: [G«G/] can serve every request of
2k vectors of any weight.

Last two also corollaries to M. Hall, Jr. 1952 “A combinatorial
problem on abelian groups”:

33



Marshall Hall, Jr.’s theorem (1952) on abelian groups

Theorem Marshall Hall, Jr. 1952: V sequence (r;), i=1,...,n,
with r; € A, A abelian group, |A| = n, >°7_; r; = 0, 3 permutations
(ai)] and (bj)] of Asuch that i =bj—a;Vi=1,...,n

Proof by quadratic-time algorithm: assign a;, b; to all r; in growing

order of /, at each step possibly changing the assignments for j < i.

34



Partial proofs of Conjecture: information/coding theory

Wang, Kiah, Cassuto 2015 G is 2 '-batch
computer proof for k < 8, then induction algorithm

Hollmann, Khathuria, R., Skachek 2023: G, is
2k=1_odd-batch — 2k~1-batch, (vectors outside hyperplane)

Yohananov, Yaakobi 2022: G is t-functional-batch for
t = [(5/6)2%"t| — k, involved proof
Lember, R. 2024: [G,G,] is 2*-functional-batch

35



Partial proofs of Conjecture: combinatorics

Balister, Gydri, Schelp 2011 Conjecture, proved simple case
Preissmann, Mischler 2009 “Seating couples problem": true
in F,, (instead of F). Independently proved in Hollmann,
Khathuria, R., Skachek 2023
Kovacs 2023 “Finding a perfect matching of ] with
prescribed differences”, arXiv, see for references True for:

e few distinct requests;

e most requests equal
Correia, Pokrovskiy, Sudakov 2023 “Short proofs of
rainbow matching results” t-functional-batch for
t = 2k=1 _ O(215k/10) for k large. General result for “full
ra nbow matchings” . Probabilistic 3-proof, weak ~= strong
see: Bowtell, Freschi, Kronenberg, Yan 2025+ “A note on
improved bounds for hypergraph rainbow matching problems”
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Conjecture in ra nbow matchings

e Con ecture. n matchings (not necessarily disjoint) of size n+ 2
have a ra tching of size n.

e Formulated by Gao, Ramadurai, Wanless, Wormald 2021,
noticed by Aharoni, Berger, Chudnovsky, Howard 2019.

e Que tion. Do n (not necessarily disjoint) matchings of size
n+ 1 have a ra tching of size n?

e Known counterexamples from 2,2; ri =0 = since
Z,Zil ri =0, we have r; =0. ¢

e No different counterexamples = Functional Batch Code

Conjecture: For V request r; take new copies of V edges a;b;
with r; = a; + b; to form i*" matching.
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Ryser-Brualdi-Stein and generalizations

J Stronger
e Ryser-Brualdi-Stein Conj: V partition of edge-set of K, ,
into n matchings, 3 ra tching size n — 1
Montgomery 2023+: true for large even n
e Matchings may intersect, not on same vertex set:
Aharoni, Berger 2009 Conj: V n matchings size n in

bipartite graph, 3 ra tching size n — 1
e Graph need not be bipartite: Aharoni, Berger 2009 (weak)
Conj: ¥V n matchings size n, 3 ra tching size n — 1

e Need full rainbow matching: Aharoni, Berger, Chudnovsky,
Howard, Seymour 2019; Gao, Ramadurai, Wanless,
Wormald 2021 Conj: V n matchings size n + 2,

Jra tching size n  (strong)
Stronger if size n+ 1: add disjoint edge e to all matchings



Conclusion

e The Functional Batch Code Conjecture or the conjecture that
G is (optimal) 2k~ 1-functional-batch is open and very

interesting, and needs everyone's attention!

See also our DCC paper, or also on arXiv: Hollmann, Khathuria,
R., Skachek 2023 “On some batch code properties of the simplex
code” Conjectures on abelian groups; application of Alon's

Nullstellensatz.

Lember, R. 2024 “Equal requests are asymptotically hardest for
data recovery”, e.g. arXiv, probabilistic results, %—fractional
functional batch code conjecture proof: [G,Gy] serves 2 requests

THANK YOU! Ago-Erik Riet, Univ. of Tartu, ago-erik.riet @ ut.ee
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Odd-batch and %—fractional—batch as corollaries

Odd-batch (outside hyperplane) unpublished proof: For hyperplane
H C 4, i.e. (k — 1)-dim. linear subspace, i.e. F5 = HU (H + a),
given sequence ri, ..., rowr1 € H+ a, let ri. =ri—a,i< 2k-1
roe1 = — Y jook-1 1. Get permutations (y;), (x}) of H with
ri=y.—xl. Then Vi:xij=x,eH, Vi:y;=y.+acH+a
are all distinct, and r; = y; — x;, i < 2k71. Adding fixed b to each
Xi,¥i, w.m.a. Xok—1 = 0, Fok—1 = ypk—1. Serve from Gy.
%—fractional—batch (Lember, R. 2024) Given request sequence
ri,....rx €F5 let rl=r;, i < 2k-1, o1 == okl Get
permutations (y%), (x!) of F§ with ri =y’ — x..  Then letting

xi = x:+ b, y; =y’ + b for such fixed b that y,«x = rox, we have

ri=y;— x;, Vi < 2K and ro« = y. Serve from two copies of Gy.
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