Distributed Storage and Data Recovery

Distributed data storage, service and computation

Ago-Erik Riet

Theoretical Computer Science Seminar Tartu, 29 April 2025

University of Tartu, Tartu, Estonia Email: agoerik@ut.ee

Distributed Storage System (DSS)

- Cloud storage and computing systems of Google, Amazon, Facebook, Dropbox, AI companies etc. need to be reliable
- Data is stored *redundantly* to prevent data loss: replicated into copies / coded using linear combinations
- Storage node (server/rack) repair from
 - few other nodes (locality), with alternatives (availability)
 - by computing, transferring (bandwidth) a small amount of data
- Updating data economically
- Serving data in parallel from small sets of nodes, with alternatives \rightarrow "distributed service system", service rate region, batch codes
- Private Information Retrieval (PIR) \rightarrow PIR codes
- Multiparty computation (with or without privacy)
- Coded caching

• ...

Errors vs erasures

Figure: Encyclopedia of Physical Science and Technology (Third Edition), 2003

- Distributed storage systems (DSSs) use erasure codes, as a defunct node is recognized by the DSS as such
- DSSs are typically linearly coded:
 e.g. (a b) (1 0 1 1) = (a b a+b), i.e.
 data symbols a, b stored in three servers as a, b, a XOR b, so a ← a, a ← b + (a + b), and b ← b, b ← a + (a + b)

Regenerating codes

Node capacity

Figure: PhD thesis of Junming Ke

- Trade-off between redundancy and bandwidth of node repair: information-theoretic *cutset bound* (blue curve)
- Regenerating codes are optimal, i.e. on the blue curve
- Convex combinations in cutset region by "time-sharing"
- Ke, Hollmann, Riet '24 found a practical, functional-repair regenerating code in blue corner point other than MSR, MBR

Combinatorial Designs, Finite Geometry

- Fano plane: first finite projective plane PG(dim = 2, q = 2)
- First combinatorial *block design*: 2 (7, 3, 1) design

 $t - (v, k, \lambda)$ Each t of the v points contained in = λ of the blocks, size k lines

Hamming code: update performance

Hamming code: update performance

(a b c d a+b+d b+c+d a+b+c)

6

Hamming code: update performance

(a b c d a+b+d b+c+d a+b+c) Updated a twice Can aggregate updates: $a+\Delta_1+\Delta_2 = a+(\Delta_1+\Delta_2)$

$$\left(\begin{array}{c} a \ b \ c \ d \end{array}\right) \left(\begin{array}{c} 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \end{array}\right) = \left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$
$$\left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \\ matrix \end{array}\right) = \left(\begin{array}{c} c \ coded \ symbols \end{array}\right) \left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \\ matrix \end{array}\right)$$

$$\left(\begin{array}{cccc} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$

Each circle parity-check: has sum 0 mod 2

$$(a \ b \ c \ d) \begin{pmatrix} 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \end{pmatrix} = (a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c)$$

$$(data \ symbols) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ box{}) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ b) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded \ symbols \ symbols \ symbols \end{pmatrix} = (coded \ symbols \ symbols \ symbols \end{pmatrix} = (coded \ symbols \$$

$$\left(\begin{array}{cccc} a \ b \ c \ d \ a + b + d \ b + c + d \ a + b + c \end{array}
ight) \left(\begin{array}{cccc} 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \end{array}
ight)$$

Error: Sum wrong in pink, violet circle

$$(a b c d) \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = (a b c d a+b+d b+c+d a+b+c)$$

$$(data symbols) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded symbols) \begin{pmatrix} generator \\ matrix \end{pmatrix} =$$

$$\left(\begin{array}{cccc} a & b & c & d & a+b+d & b+c+d & a+b+c \\ 1 & 0 & 1 & 0 & 0 \end{array}\right)$$

Error: Sum wrong in pink, violet circle Change bit in pink, violet, not green

$$\left(\begin{array}{c} a \ b \ c \ d \end{array}\right) \left(\begin{array}{c} 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \end{array}\right) = \left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$
$$\left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$
$$\left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$
$$\left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$

$$\left(\begin{array}{cccc} a & b & c & d & a+b+d & b+c+d & a+b+c \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

Two errors. Sum wrong in pink, violet circle

$$(a b c d) \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = (a b c d a+b+d b+c+d a+b+c)$$

$$(data symbols) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded symbols) \begin{pmatrix} generator \\ matrix \end{pmatrix} =$$

$$\left(\begin{array}{cccc} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \\ \left(\begin{array}{cccc} 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \end{array}\right)^{2}$$

Two errors. Sum wrong in pink, violet circle Change bit in pink, violet, not green Repair failed!

$$\left(\begin{array}{c} a \ b \ c \ d \end{array}\right) \left(\begin{array}{c} 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \end{array}\right) = \left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$
$$\left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right)$$
$$\left(\begin{array}{c} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \end{array}\right) = \left(\begin{array}{c} c \ coded \ symbols \end{array}\right) \left(\begin{array}{c} generator \\ matrix \end{array}\right) = \left(\begin{array}{c} c \ coded \ symbols \end{array}\right) \left(\begin{array}{c} generator \\ matrix \end{array}\right)$$

$$\left(\begin{array}{cccc} a & b & c & d & a+b+d & b+c+d & a+b+c \\ (1 & 0 & 1 & 0 & 0 \\ \end{array}\right)$$

Each circle parity-check: has sum 0 mod 2

$$(a b c d) \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = (a b c d a+b+d b+c+d a+b+c)$$

$$(data symbols) \begin{pmatrix} generator \\ matrix \end{pmatrix} = (coded symbols) \begin{pmatrix} generator \\ generator \end{pmatrix} = (coded symbols) \begin{pmatrix} generator \\ generator \\ generator \end{pmatrix} = (coded symbols) \begin{pmatrix} generator \\ generator \\ generator \end{pmatrix} = (coded symbols) \begin{pmatrix} generator \\ generator \\ generat$$

$$\left(\begin{array}{cccc} a & b & c & d & a+b+d & b+c+d & a+b+c \\ 1 & 0 & 1 & 0 & \varepsilon \end{array} \right)$$

Two erasures Recover bit from pink

$$\left(\begin{array}{cccc} a \ b \ c \ d \ a+b+d \ b+c+d \ a+b+c \\ \left(\begin{array}{cccc} 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \end{array}\right)$$

Two erasures Recover bit from pink Recover bit from green

 $(a b c d) \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} = (a b c d a+b+d b+c+d a+b+c)$ (data symbols) (generator matrix) = (coded symbols)

Simplex code: the dual of Hamming code

$$\left(\verb"a b c b+c a+c a+b a+b+c
ight)$$

More parity-checks

$$\left(\begin{array}{c} a \ b \ c \end{array}\right) \left(\begin{array}{c} 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \end{array}\right) = \left(\begin{array}{c} a \ b \ c \ b+c \ a+c \ a+b \ a+b+c \end{array}\right)$$

Simplex code: the dual of Hamming code

$$\left(ext{ a } b \ c \ b{+}c \ a{+}c \ a{+}b \ a{+}b{+}c
ight)$$

More parity-checks Corrects any 3 erasures

 $(a b c) \begin{pmatrix} 1 0 0 0 1 1 1 \\ 0 1 0 1 0 1 1 \\ 0 0 1 1 1 0 1 \end{pmatrix} = (a b c b + c a + c a + b a + b + c)$

8

Simplex code: the dual of Hamming code

$$ig(\verb"a" b" c" b+c" \verb"a+c" a+b" \verb"a+b+c" ig)$$

More parity-checks Corrects any 3 erasures Stopping set / set without tangents

 $(a b c) \begin{pmatrix} 1 0 0 0 1 1 1 \\ 0 1 0 1 0 1 1 \\ 0 0 1 1 1 0 1 \end{pmatrix} = (a b c b + c a + c a + b a + b + c)$

8

Distributed service system

Figure: Vitaly Skachek

Service rate region

Figure: Service Rate Region: A New Aspect of Coded Distributed System Design, TIT, 2021, by Aktaş,

Definition of Batch Codes

- Proposed in the crypto community for:
 - Load balancing
 - Private information retrieval

Definition [Ishai, Kushilevitz, Ostrovsky, Sahai 2004] An $(k, N, t, n, \nu)_{\Sigma}$ batch code over Σ encodes any $a = (a_1, a_2, \dots, a_k) \in \Sigma^k$ into *n* strings (buckets) c_1, c_2, \dots, c_n over Σ of total length *N*, such that $\forall i_1, i_2, \dots, i_t \in [k]$, *t* users can retrieve $a_{i_1}, a_{i_2}, \dots, a_{i_t}$, resp., by reading $\leq \nu$ symbols from each bucket, s.t. a_{i_ℓ} is recovered from symbols read by ℓ -th user alone

 Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, "Batch codes and their applications,", Proc. 36th ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.

Motivation

- Private information retrieval (PIR) codes for multi-server private information retrieval to reduce the storage overhead [Fazeli, Vardy, Yaakobi]
- Batch codes for server load balancing for hot data [Ishai, Kushilevitz, Ostrovsky, Sahai]
- Primitive multiset batch codes / PIR codes:
 t clients access pairwise disjoint sets of servers to retrieve
 - any $(a_{i_1}, \ldots, a_{i_t}), a_{i_i} \in [k]$ for batch codes
 - any (a_i, \ldots, a_i) , $i \in [k]$ for PIR codes

• A. Fazeli, A. Vardy, and E. Yaakobi, "PIR with low storage overhead: coding instead of replication", 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, pp. 2852-2856, 2015.

• Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, "Batch codes and their applications,", Proc. 36th ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.

Example: simplex code k = 3

Linear (computational) PIR/batch codes

- $\mathbf{x} = (x_1, x_2, \cdots, x_k)$ information string
- $\mathbf{y} = (y_1, y_2, \cdots, y_{n-k})$ encoding of \mathbf{x} redundant symbols
- write y_i , $i \in \{1, \cdots, n-k\}$ as $y_i = \sum_{j=1}^k g_{j,i} x_j$
- Generator matrix: [I|G] where $G = (g_{j,i})_{j \in [k], i \in [n-k]}$ the encoding is [x|y] = x[I|G]
- $E = \{x_1, \ldots, x_k\}$ (information symbols)
- $V = \{y_1, \dots, y_{n-k}\}$ (redundant symbols)
- $\{x_j, y_i\} \in \mathsf{S}$ (an edge) iff $g_{j,i} \neq 0$
- bipartite graph G(E, V, S) (left part E, right part V, edge set S); hypergraph H(V, E)

Graph-based PIR/batch codes

• [Rawat, Song, Dimakis, Gal]: if G(E, V, S) has girth (length of shortest cycle) ≥ 6 , resp. ≥ 8 and min deg $(x_i) \geq t - 1$ for $x_i \in E$ then graph gives t-user PIR code, resp. batch code Berge 2-cvcle • Call the codes graph-based Xi رر 0 ō 4-cycle ightarrow0 Xm Vm X_k 6-cycle ightarrow X_m Υı Berge 3-cycle

• A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, "Batch codes through dense graphs without short cycles", *IEEE Trans. Information Theory*, vol. 62, no. 4, pp. 1592-1604, 2016.

Asynchronous batch code model

- Synchronous (classical) serve t requests at same time
- Asynchronous (R., Skachek, Thomas) stream of requests
 Can start serving any new request whenever < t requests are currently being served
- For any code C we have $t_{\max}^{\text{asynch}}(C) \leq t_{\max}^{\text{synch}}(C)$

•
$$C = (\text{simplex code } k = 3)$$

 $\Rightarrow t_{\max}^{\text{synch}}(C) = 4; t_{\max}^{\text{asynch}}(C) = 2$

- For graph-based batch (and PIR) codes
 t^{synch}_{max} ≥min_left_degree+1 [Rawat, Song, Dimakis, Gal]
- Observation (R., Skachek, Thomas): Graph-based (PIR and) batch codes have t^{asynch}_{max} ≥min_left_degree+1

• A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, "Batch codes through dense graphs without short cycles", *IEEE Trans. Information Theory*, vol. 62, no. 4, pp. 1592-1604, 2016.

Asynchronous batch code model - examples

Ex. 1: / / 2 3 2 3 1 3 3 / 1 3 2 / 3 / 2 ...

Ex. 2: Code $[x_1 \ x_2 \ x_1 \oplus x_2]$ (simplex code for k = 2).

• $t_{\text{max}}^{\text{synch}} = 2$, indeed:

- can serve x_1 and $x_1 = x_2 \oplus (x_1 \oplus x_2)$;
- can serve x₁ and x₂;
- can serve x_2 and $x_2 = x_1 \oplus (x_1 \oplus x_2)$;
- cannot serve x₁, x₁ and x₁.
- But $t_{\max}^{\text{asynch}} = 1$, indeed:
 - stream of requests: 112...;
 - serve x₁ (1st server);
 - serve $x_1 = x_2 \oplus (x_1 \oplus x_2)$ (2nd and 3rd server);
 - 1st server finishes serving;
 - but incoming request x₂ cannot be served by 1st server only.

Hypergraphs and graph-based PIR/batch codes

- Remove edges to make G(E, V, S) (t 1)-left-regular
 Girth cannot decrease no new cycles
- Corresponding (t − 1)-uniform (multi)hypergraph
 ("(t − 1)-graph") H(V, E): identify e ∈ E with {v | {e, v} ∈ I}
- For PIR codes (bipartite girth ≥ 6 or Berge girth ≥ 3) equivalently a 2-(|V|, t − 1, 1) packing design. Asymptotically optimal packing designs exist (for large enough |V|).
- For batch codes (bipartite girth ≥ 8 or Berge girth ≥ 4) use solution of "(3(t − 1) − 3, 3)-problem" (cf. "Ruzsa-Szemerédi (6, 3)-problem"):

Hypergraph (6,3)-problem

- [Brown, Erdős and Sós] H^(t-1)(n k; κ, s): max. number of hyperedges of an (t 1)-graph on n k vertices whose no set of κ vertices contains s or more hyperedges (fixed t, κ, s)
- [Ruzsa and Szemerédi] essentially solved first open case $H^{(3)}(n-k;6,3)$, known as the (6,3)-problem
- [Erdős, Frankl and Rödl] essentially found $H^{(t-1)}(n-k; 3(t-1)-3, 3)$, solved (3(t-1)-3, 3)-problem We applied their solution to graph-based batch codes

• W. G. Brown, P. Erdős, and V.T. Sós, "Some extremal problems on *r*-graphs", New Directions in the Theory of Graphs, 3rd Ann. Arbor Conference on Graph Theory, Academic Press, pp. 55–63, 1973.

• W. G. Brown, P. Erdős, and V.T. Sós, "On the existence of triangulated spheres in 3-graphs and related problems", *Periodica Mathematica Hungaria*, vol. 3, pp. 221–228, 1973.

• I.Z. Ruzsa, E. Szemerédi, "Triple systems with no six points carrying three triangles", Coll. Math. Soc. Janos Bolyai, no. 18, pp. 939–945, 1978.

• P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", *Graphs and Combinatorics*, vol. 2, No. 1, pp. 113–121, 1986.

Hypergraph (6,3)-problem

• PROPOSITION (Riet, Skachek, Thomas):

 $H^{(t-1)}(n-k; 3(t-1)-3, 3) = B^{(t-1)}(n-k; 4)$

where $B^{(t-1)}(n-k; 4)$ is max. number of hyperedges in a (t-1)-graph on (n-k) vertices with Berge girth ≥ 4

Proof outline. A (t - 1)-graph with no 3 hyperedges contained in any set of 3(t - 1) - 3 vertices, can be modified slightly to have no Berge 2- or 3-cycle. A (t - 1)-graph with no Berge 2- or 3-cycles already has no 3 hyperedges contained in any set of 3(t - 1) - 3 vertices

• P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", *Graphs and Combinatorics*, vol. 2, No. 1, pp. 113–121, 1986.

Erdős, Frankl and Rödl construction

 Arrange vertices as \[(n-k)/(t-1)\]-by-(t-1)-grid.
 Hyperedges are lines of t - 1 points with restricted slopes: Avoid 3-cycles (triangles):

3 slopes, 3 elements (here 4,3,2) of (t - 1)-element arithmetic progression might give rise to a Berge 3-cycle

Erdős, Frankl and Rödl construction

- [Behrend] constructed a big subset of {1, 2, ..., N}
 containing no 3-term arithmetic progression (a, a + b, a + 2b)
- [Erdős, Frankl and Rödl] modified the contstruction, giving a big subset A ⊆ {1, 2, ..., N}, containing no 3 terms of any (t 1)-term arithmetic progression
- In the grid, use only lines with slopes from A
- Obtain hypergraph $\mathcal{H}(V, E)$ without (Berge) 2- or 3-cycles
- The respective bipartite graph G(E, V, S) has girth ≥ 8, producing a graph-based batch code

• F.A. Behrend "On sets of integers which contain no three elements in arithmetic progression", Nat. Acad. Sci., no. 23, pp. 331–332, 1946.

• P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", *Graphs and Combinatorics*, vol. 2, No. 1, pp. 113–121, 1986.

Erdős, Frankl and Rödl construction and bound

- Gives $k = \Omega((n-k)^{2-\epsilon})$ hyperedges for any $\epsilon > 0$
- Reminder: there are n-k redundant symbols/vertices and $k=(n-k)^{2-\epsilon}$ information symbols/hyperedges and $t-1\geq 3$
- Redundancy $r = n k = O(k^{1/(2-\epsilon)})$
- [Erdős, Frankl and Rödl] use (early version) Szemerédi's Regularity Lemma to bound number of hyperdges to $o((n-k)^2)$, so $\lim \frac{r}{\sqrt{k}} \to \infty$ for redundancy r of graph-based batch codes

• J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi "The Regularity Lemma and Its Applications in Graph Theory", in: G. Khosrovshahi, A. Shokoufandeh, and A. Shokrollahi(eds) "Theoretical Aspects of Computer Science", Springer, pp. 84–112, 2002.

• P. Erdös, P. Frankl, V. Rödl, "The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent", *Graphs and Combinatorics*, vol. 2, No. 1, pp. 113–121, 1986.

- For 2-graphs (graphs) we need to avoid multiple-edges and 3-cycles
- Max. number of edges in a graph on n k vertices with no triangles is $\lfloor \frac{(n-k)^2}{4} \rfloor$ by Mantel's (Turán's) Theorem
- The complete bipartite graph H(V, E) = K_{⊥(n-k)/2}, _[(n-k)/2] attains this bound. Example: K_{3,4}:

- Can construct respective bipartite graph G(E, V, S) which is 2-left-regular and has girth ≥ 8
- For graph-based batch codes for t = 3 thus redundancy

 $r=n-k=\Theta(\sqrt{k})$

Open questions

- [Rao, Vardy] proved redundancy $r = \Omega(\sqrt{k})$ for PIR codes for t=3. Thus this holds for $t \ge 3$ and for batch codes for $t \ge 3$
- [Vardy, Yaakobi] showed for batch codes $r = O(\sqrt{k})$ for
 - t = 3, 4 and $r = O(\sqrt{k} \log k)$ for $t \ge 5$
- Note gap for t = 4 between O(√k) and ω(√k) general/graph-based batch codes
- For t ≥ 4 find asymptotics of optimal redundancy for graph-based batch codes
- Is there a gap for $t \ge 5$ between optimal redundancy of batch codes $(O(\sqrt{k} \log k))$ and graph-based batch codes $(O(k^{1/(2-\epsilon)})$ and $\omega(\sqrt{k}))$?
- Find good asynch. batch codes other than graph-based
- S. Rao and A. Vardy, "Lower Bound on the Redundancy of PIR Codes", arXiv:1605.01869, May 2016.

• A. Vardy and E. Yaakobi, "Constructions of batch codes with near-optimal redundancy", Proc. ISIT, Barcelona, pp. 1197-1201, July 2016.

On the Functional Batch Code Conjecture:

- Introduction: data recovery, definitions of batch-type codes
- Simplex code as batch code
- Functional Batch Code Conjecture and related results
- Two results as corollary of Marshall Hall, Jr. 1952, "A combinatorial problem on abelian groups"
- Rainbow matchings
- Future directions

Data recovery

Encoding: data $\boldsymbol{a} = (a_1, \dots, a_k)$ stored as $\boldsymbol{c} = (c_1, \dots, c_n) = \boldsymbol{a}\boldsymbol{G}$ Recovering data:

$$\boldsymbol{G} = \begin{bmatrix} \boldsymbol{g}_1^\top & \boldsymbol{g}_2^\top & \cdots & \boldsymbol{g}_k^\top \end{bmatrix}$$

If $\sum_{i \in I} \boldsymbol{g}_i = \boldsymbol{e}_j = (0, \dots, 0, 1, 0, \dots, 0),$
that is, $\boldsymbol{G} \cdot \chi_I = \boldsymbol{e}_j^\top$, then $\boldsymbol{c} \cdot \chi_I = \boldsymbol{a} \cdot \boldsymbol{G} \cdot \chi_I = \boldsymbol{a} \cdot \boldsymbol{e}_j^\top$,
so $\sum_{i \in I} c_i = a_j.$

So property of interest $\sum_{i \in I} \boldsymbol{g}_i = \boldsymbol{e}_j$ depends on \boldsymbol{G} and not on data!

Definition

 $k \times n$ matrix **G** can serve request sequence/multiset $\mathbf{r}_1, \ldots, \mathbf{r}_t$ of (not necessarily distinct) vectors in \mathbb{F}_2^k if $\exists \mathbf{p}/\mathbf{w} \text{ disjoint } column \text{ index sets } l_1, \ldots, l_t \text{ s.t. } \mathbf{r}_j \in \langle col's \ l_j \text{ of } \mathbf{G} \rangle$

$$\sum_{i \in I_j} \boldsymbol{g}_i = \boldsymbol{r}_j$$
, for $j = 1, \dots, t$ over \mathbb{F}_2

Codes are functional: \forall individual request r is for lin. comb.

$$\mathbf{ar}^{\top} = a_1 r_1 + \cdots + a_k r_k$$

of the data symbols

Example

$$oldsymbol{G}_2 = \left[egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & 1 \end{array}
ight] = \left[egin{array}{ccc} oldsymbol{e}_1^ op & oldsymbol{e}_2^ op & oldsymbol{e}_2$$

$$\boldsymbol{a}=(a_1,a_2)\longrightarrow \boldsymbol{c}=\boldsymbol{a}\boldsymbol{G}_2=(c_1,c_2,c_3)=(a_1,a_2,a_1+a_2)$$

2-PIR:

 $e_1, e_1 \leftarrow \{1\}, \{2,3\}$ two same requests: one+two columns 2-batch:

 $e_1, e_2 \leftarrow \{1\}, \{2\}$ two different requests: one+one column 2-functional-batch:

$$egin{aligned} egin{aligned} egin{aligned} eta_1, eta_1 + eta_2 & \longleftarrow \ \{1\}, \{3\} \ eta_1 + eta_2, eta_1 + eta_2 & \longleftarrow \ \{1, 2\}, \{3\} \end{aligned}$$

PIR/batch code definitions

An encoder (= a generator matrix \boldsymbol{G}) is

- 1. a *t*-fold repetition of a unit vector
- 2. t unit vectors
- 3. *t* odd-weight (not in hyperplane) vectors
- 4. t arbitrary vectors

Proposition

Any *t*-PIR code **G** (the most general, thus each of the previous) generates a code with minimum distance at least t.

Simplex code

Binary simplex code, dimension k, length $n = 2^k - 1$, generator matrix $\boldsymbol{G}_k \in F_2^{k \times (2^k - 1)}$

$$\boldsymbol{G}_{k} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1^{\top} & 2^{\top} & 3^{\top} & \cdots & (2^{k} - 1)^{\top} \end{bmatrix}$$

Has minimal distance 2^{k-1} , so "optimal" would be $t = 2^{k-1}$.

Greedy does not always work (using only recovery sets size ≤ 2)

 $t = 2^{k-1} = 4.$

Request:
$$r_1 = 1, r_2 = 2, r_3 = 1, r_4 = 2$$
.
Serve $r_1 = 1$ and $r_2 = 2$ by $\{1\}$ and $\{2\}$ (cheapest).

Then $r_3 = 1$ by $\{4,5\}$ or $\{6,7\}$;

and
$$r_4 = 2$$
 by $\{4, 6\}$ or $\{5, 7\}$.

Not possible!

Use service $\{1\}, \{4,6\}, \{2,3\}, \{5,7\}.$

Balister, Győri, Schelp 2011 Conj.: \forall multiset of vectors of \mathbb{F}_2^k , size 2^{k-1} , with sum 0, \exists partition of \mathbb{F}_2^k into pairs with sums the elements of the multiset. Still OPEN! Equivalent to:

Yamawaki, Kamabe, Lu 2017; Yohananov, Yaakobi 2022 "Hadamard solution version" Functional Batch Code Conj.: $\forall 2^{k-1}$ requests from \mathbb{F}_2^k can be served with recovery sets size ≤ 2 , all but ≤ 2 size = 2. I.e. G_k is 2^{k-1} -functional-batch.

Hollmann, Khathuria, R., Skachek 2023: G_k can serve every request of 2^{k-1} vectors of odd weight (or outside a hyperplane).

Lemma in Lember, R. 2024: $[G_k G_k]$ can serve every request of 2^k vectors of any weight.

Last two also corollaries to M. Hall, Jr. 1952 "A combinatorial problem on abelian groups":

Theorem Marshall Hall, Jr. 1952: \forall sequence (r_i) , i = 1, ..., n, with $r_i \in A$, A abelian group, |A| = n, $\sum_{i=1}^n r_i = 0$, \exists permutations $(a_i)_1^n$ and $(b_i)_1^n$ of A such that $r_i = b_i - a_i \forall i = 1, ..., n$.

Proof by quadratic-time algorithm: assign a_i , b_i to all r_i in growing order of i, at each step possibly changing the assignments for j < i.

- Wang, Kiah, Cassuto 2015 G_k is 2^{k-1}-batch computer proof for k ≤ 8, then induction algorithm
- Hollmann, Khathuria, R., Skachek 2023: G_k is 2^{k-1} -odd-batch $\rightarrow 2^{k-1}$ -batch, (vectors outside hyperplane)
- Yohananov, Yaakobi 2022: G_k is *t*-functional-batch for $t = \lfloor (5/6)2^{k-1} \rfloor k$, involved proof
- Lember, R. 2024: $[G_k G_k]$ is 2^k-functional-batch

Partial proofs of Conjecture: combinatorics

- Balister, Győri, Schelp 2011 Conjecture, proved simple case
- Preissmann, Mischler 2009 "Seating couples problem": true in 𝔽_p (instead of 𝔽^k₂). Independently proved in Hollmann, Khathuria, R., Skachek 2023
- Kovács 2023 "Finding a perfect matching of 𝔽₂ⁿ with prescribed differences", arXiv, see for references True for:
 - few distinct requests;
 - most requests equal
- Correia, Pokrovskiy, Sudakov 2023 "Short proofs of rainbow matching results" *t*-functional-batch for $t = 2^{k-1} O(2^{15k/16})$ for *k* large. General result for "full

rainbow matchings" . Probabilistic \exists -proof, weak $\approx \Rightarrow$ strong

 see: Bowtell, Freschi, Kronenberg, Yan 2025+ "A note on improved bounds for hypergraph rainbow matching problems"

Conjecture in rainbow matchings

- Conjecture. n matchings (not necessarily disjoint) of size n + 2 have a rainbow matching of size n.
- Formulated by Gao, Ramadurai, Wanless, Wormald 2021, noticed by Aharoni, Berger, Chudnovsky, Howard 2019.
- Question. Do *n* (not necessarily disjoint) matchings of size n + 1 have a rainbow matching of size *n*?
- Known counterexamples from $\sum_{i=2}^{2^k} \mathbf{r}_i = 0 \Rightarrow$ since $\sum_{i=1}^{2^k} \mathbf{r}_i = 0$, we have $\mathbf{r}_1 = 0$.
- No different counterexamples ⇒ Functional Batch Code
 Conjecture: For ∀ request r_i take new copies of ∀ edges a_ib_i with r_i = a_i + b_i to form ith matching.

Ryser-Brualdi-Stein and generalizations

- \downarrow Stronger
 - Ryser-Brualdi-Stein Conj: ∀ partition of edge-set of K_{n,n} into n matchings, ∃ rainbow matching size n − 1
 Montgomery 2023+: true for large even n
 - Matchings may intersect, not on same vertex set:
 Aharoni, Berger 2009 Conj: ∀ n matchings size n in bipartite graph, ∃ rainbow matching size n − 1
 - Graph need not be bipartite: Aharoni, Berger 2009 (weak)
 Conj: ∀ n matchings size n, ∃ rainbow matching size n 1
 - Need full rainbow matching: Aharoni, Berger, Chudnovsky, Howard, Seymour 2019; Gao, Ramadurai, Wanless, Wormald 2021 Conj: ∀ n matchings size n + 2, ∃ rainbow matching size n (strong)
 Stronger if size n + 1: add disjoint edge e to all matchings

Conclusion

 The Functional Batch Code Conjecture or the conjecture that *G_k* is (optimal) 2^{k-1}-functional-batch is open and very interesting, and needs everyone's attention!

See also our DCC paper, or also on arXiv: Hollmann, Khathuria, R., Skachek 2023 "On some batch code properties of the simplex code" Conjectures on abelian groups; application of Alon's Nullstellensatz.

Lember, R. 2024 "Equal requests are asymptotically hardest for data recovery", e.g. arXiv, probabilistic results, $\frac{1}{2}$ -fractional functional batch code conjecture proof: $[G_k G_k]$ serves 2^k requests THANK YOU! Ago-Erik Riet, Univ. of Tartu, ago-erik.riet @ ut.ee

Odd-batch and $\frac{1}{2}$ -fractional-batch as corollaries

Odd-batch (outside hyperplane) unpublished proof: For hyperplane $H \subseteq \mathbb{F}_2^k$, i.e. (k-1)-dim. linear subspace, i.e. $\mathbb{F}_2^k = H \cup (H + a)$, given sequence $r_1, ..., r_{2^{k-1}} \in H + a$, let $r'_i = r_i - a$, $i < 2^{k-1}$. $\mathbf{r}'_{2k-1} = -\sum_{i < 2^{k-1}} \mathbf{r}'_i$. Get permutations (\mathbf{y}'_i) , (\mathbf{x}'_i) of H with $\mathbf{r}'_i = \mathbf{y}'_i - \mathbf{x}'_i$. Then $\forall i : \mathbf{x}_i = \mathbf{x}'_i \in H$, $\forall i : \mathbf{y}_i = \mathbf{y}'_i + \mathbf{a} \in H + \mathbf{a}$ are all distinct, and $\mathbf{r}_i = \mathbf{y}_i - \mathbf{x}_i$, $i < 2^{k-1}$. Adding fixed **b** to each $x_i, y_i,$ w.m.a. $x_{2^{k-1}} = 0, r_{2^{k-1}} = y_{2^{k-1}}$. Serve from G_k . $\frac{1}{2}$ -fractional-batch (Lember, R. 2024) Given request sequence $\mathbf{r}_1, \ldots, \mathbf{r}_{2^k} \in \mathbb{F}_2^k$, let $\mathbf{r}_i' = \mathbf{r}_i$, $i < 2^{k-1}$, $\mathbf{r}_{2^{k-1}}' = -\sum_{i < 2^{k-1}} \mathbf{r}_i'$. Get permutations (\mathbf{y}'_i) , (\mathbf{x}'_i) of \mathbb{F}_2^k with $\mathbf{r}'_i = \mathbf{y}'_i - \mathbf{x}'_i$. Then letting $\mathbf{x}_i = \mathbf{x}'_i + \mathbf{b}, \ \mathbf{y}_i = \mathbf{y}'_i + \mathbf{b}$ for such fixed \mathbf{b} that $\mathbf{y}_{2^k} = \mathbf{r}_{2^k}$, we have $\mathbf{r}_i = \mathbf{y}_i - \mathbf{x}_i, \forall i < 2^k \text{ and } \mathbf{r}_{2^k} = \mathbf{y}_{2^k}$. Serve from two copies of \mathbf{G}_k .