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Distributed Storage System (DSS)

• Cloud storage and computing systems of Google, Amazon,
Facebook, Dropbox, AI companies etc. need to be reliable

• Data is stored redundantly to prevent data loss: replicated into
copies / coded using linear combinations

• Storage node (server/rack) repair from
• few other nodes (locality), with alternatives (availability)
• by computing, transferring (bandwidth) a small amount of data

• Updating data economically
• Serving data in parallel from small sets of nodes, with

alternatives → “distributed service system”, service rate region,
batch codes

• Private Information Retrieval (PIR) → PIR codes
• Multiparty computation (with or without privacy)
• Coded caching
• ... 2



Errors vs erasures

Figure: Encyclopedia of Physical Science and Technology (Third Edition), 2003

• Distributed storage systems (DSSs) use erasure codes, as a
defunct node is recognized by the DSS as such

• DSSs are typically linearly coded:
e.g. ( a b ) ( 1 0 1

0 1 1 ) = ( a b a+b ), i.e.
data symbols a, b stored in three servers as a, b, a XOR b, so
a← a, a← b + (a+ b), and b ← b, b ← a+ (a+ b)
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Regenerating codes

Figure: PhD thesis of Junming Ke

• Trade-off between redundancy and bandwidth of node repair:
information-theoretic cutset bound (blue curve)

• Regenerating codes are optimal, i.e. on the blue curve
• Convex combinations in cutset region by “time-sharing”
• Ke, Hollmann, Riet ’24 found a practical, functional-repair

regenerating code in blue corner point other than MSR, MBR 4



Combinatorial Designs, Finite Geometry
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Mon: Chase Everest Rubble
Tue: Chase Zuma Skye
Wed: Zuma Marshall Rubble
Thu: Chase Marshall Rocky
Fri: Zuma Rocky Everest
Sat: Marshall Everest Skye
Sun: Rocky Skye Rubble

• Fano plane: first finite projective plane PG(dim = 2, q = 2)

• First combinatorial block design: 2− (7, 3, 1) design
t − (v , k , λ)

Each t of the v points contained in = λ of the blocks, size k

lines
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Hamming code: update performance

a+ b + d d
b

a

a+ b + c

b + c + d

c
( a b c d a+b+d b+c+d a+b+c )

Can aggregate updates:
a+∆1+∆2 = a+(∆1+∆2)

( a b c d )

(
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

)
= ( a b c d a+b+d b+c+d a+b+c )

( data symbols )
( generator

matrix

)
= ( coded symbols )
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Hamming code: update performance
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Hamming code: update performance

a+ b + d d
b

a

a+ b + c

b + c + d

c
( a b c d a+b+d b+c+d a+b+c )
Updated a twice
Can aggregate updates:
a+∆1+∆2 = a+(∆1+∆2)

( a b c d )

(
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

)
= ( a b c d a+b+d b+c+d a+b+c )

( data symbols )
( generator

matrix

)
= ( coded symbols )
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Hamming code: errors and erasures

1 0
0

1

1

0

0
( a b c d a+b+d b+c+d a+b+c )
( 1 0 1 0 1 0 0 )

Each circle parity-check:
has sum 0 mod 2

( a b c d )

(
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

)
= ( a b c d a+b+d b+c+d a+b+c )

( data symbols )
( generator

matrix

)
= ( coded symbols )
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Hamming code: errors and erasures

1 1
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0
( a b c d a+b+d b+c+d a+b+c )
( 1 0 1 1 1 0 0 )

Error: Sum wrong in
pink, violet circle
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Hamming code: errors and erasures

1 0
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not green

( a b c d )

(
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

)
= ( a b c d a+b+d b+c+d a+b+c )

( data symbols )
( generator

matrix

)
= ( coded symbols )

7



Hamming code: errors and erasures

1 0
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Two errors. Sum wrong
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Hamming code: errors and erasures

1 1
1
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0

0

0

( a b c d a+b+d b+c+d a+b+c )
( 1 1 1 1 1 0 1 )

Two errors. Sum wrong
in pink, violet circle
Change bit in pink, violet,
not green
Repair failed!

( a b c d )

(
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

)
= ( a b c d a+b+d b+c+d a+b+c )

( data symbols )
( generator

matrix

)
= ( coded symbols )
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Hamming code: errors and erasures

1 0
ε1

ε

0

0
( a b c d a+b+d b+c+d a+b+c )
( 1 ε 1 0 1 0 ε )

Two erasures

( a b c d )
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0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0
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Hamming code: errors and erasures
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Hamming code: errors and erasures
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( a b c d a+b+d b+c+d a+b+c )
( 1 0 1 0 1 0 1 )
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Recover bit from pink
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Simplex code: the dual of Hamming code

a a+ b

a + b + c

a+ c

c

b

b + c
( a b c b+c a+c a+b a+b+c )

More parity-checks

( a b c )
(

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

)
= ( a b c b+c a+c a+b a+b+c )

Parity-
checks


row1: 1 1 0 1 0 0 0
row2: 0 1 1 0 1 0 0
row3: 0 0 1 1 0 1 0
row4: 0 0 0 1 1 0 1
row5: 1 0 0 0 1 1 0
row6: 0 1 0 0 0 1 1
row7: 1 0 1 0 0 0 1

, generator
matrix

( row1−row4: 1 1 0 0 1 0 1
row2−row4: 0 1 1 1 0 0 1
row3−row4: 0 0 1 0 1 1 1

)
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Simplex code: the dual of Hamming code

a a+ b

a + b + c

a+ c

c

b

b + c

( a b c b+c a+c a+b a+b+c )

More parity-checks
Corrects any 3 erasures
Stopping set / set with-
out tangents

( a b c )
(

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

)
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Distributed service system

a1 a2 · · · ak

G

c1 c2 c3 · · · ci−1 ci ci+1 · · · cj−1 cj cj+1 · · · cn−1 cn

User 1 User 2 · · · User t

Figure: Vitaly Skachek
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Service rate region

a a b b a+b a+b
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Figure: Service Rate Region: A New Aspect of Coded Distributed System Design, TIT, 2021, by Aktaş,

Joshi, Kadhe, Kazemi, Soljanin 10



Definition of Batch Codes

• Proposed in the crypto community for:
• Load balancing
• Private information retrieval

Definition [Ishai, Kushilevitz, Ostrovsky, Sahai 2004]

An (k ,N, t, n, ν)Σ batch code over Σ encodes any
a = (a1, a2, · · · , ak) ∈ Σk into n strings (buckets) c1, c2, · · · , cn

over Σ of total length N, such that ∀i1, i2, · · · , it ∈ [k], t users can
retrieve ai1 , ai2 , · · · , ait , resp., by reading ≤ ν symbols from each
bucket, s.t. aiℓ is recovered from symbols read by ℓ-th user alone

• • Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,”, Proc.
36th ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.
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Motivation

• Private information retrieval (PIR) codes for multi-server
private information retrieval to reduce the storage overhead
[Fazeli, Vardy, Yaakobi]

• Batch codes for server load balancing for hot data [Ishai,
Kushilevitz, Ostrovsky, Sahai]

• Primitive multiset batch codes / PIR codes: ≤ t clients access
pairwise disjoint sets of servers to retrieve

• any (ai1 , . . . , ait ), aij ∈ [k] for batch codes
• any (ai , . . . , ai ), i ∈ [k] for PIR codes

• A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead: coding instead of replication”,
2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, pp. 2852-2856, 2015.

• Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,”, Proc. 36th
ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.
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Example: simplex code k = 3

13

Generator

matrix
→ Code

↓

↑

(3-uniform) hypergraph H(V ,E )

↑

(3-left-regular) bipartite graph
G (E ,V ,S)

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


[
x1 x2 x3 x2 ⊕ x3 x1 ⊕ x3 x1 ⊕ x2 x1 ⊕ x2 ⊕ x3

= y1 = y2 = y3 = y4

]

x1

x2

x3

y1

y2

y3

y4

y1

y2

y3

y4

x3

x2

x1



Linear (computational) PIR/batch codes

• x = (x1, x2, · · · , xk) information string

• y = (y1, y2, · · · , yn−k) encoding of x - redundant symbols

• write yi , i ∈ {1, · · · , n − k} as yi =
∑k

j=1 gj ,ixj

• Generator matrix: [I |G ] where G =
(
gj ,i

)
j∈[k],i∈[n−k]

the encoding is [x |y ] = x [I |G ]

• E = {x1, . . . , xk} (information symbols)

• V = {y1, . . . , yn−k} (redundant symbols)

• {xj , yi} ∈ S (an edge) iff gj ,i ̸= 0

• bipartite graph G (E ,V ,S) (left part E , right part V , edge set
S); hypergraph H(V ,E )

14



Graph-based PIR/batch codes

• [Rawat, Song, Dimakis, Gal]: if G (E ,V ,S) has girth (length
of shortest cycle) ≥ 6, resp. ≥ 8 and min deg(xi ) ≥ t − 1 for
xi ∈ E then graph gives t-user PIR code, resp. batch code

• Call the codes graph-based

xi

yj xj

yi

xk
yl

xl

ym

xm
yk

←→

←→

yk
yl

ym

yiyjxi xj

xk

xm

xl

• A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, “Batch codes through dense graphs without
short cycles”, IEEE Trans. Information Theory, vol. 62, no. 4, pp. 1592-1604, 2016.

15

4-cycle→

6-cycle→

Berge 2-cycle
↓

↑
Berge 3-cycle



Asynchronous batch code model

• Synchronous (classical) - serve t requests at same time

• Asynchronous (R., Skachek, Thomas) - stream of requests
Can start serving any new request whenever < t requests are
currently being served

• For any code C we have tasynch
max (C ) ≤ tsynch

max (C )

• C = (simplex code k = 3)
⇒ tsynch

max (C ) =4; tasynch
max (C ) =2

• For graph-based batch (and PIR) codes
tsynch
max ≥min left degree+1 [Rawat, Song, Dimakis, Gal]

• Observation (R., Skachek, Thomas): Graph-based (PIR and)
batch codes have tasynch

max ≥min left degree+1
• A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gal, “Batch codes through dense graphs without
short cycles”, IEEE Trans. Information Theory, vol. 62, no. 4, pp. 1592-1604, 2016.
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Asynchronous batch code model - examples

Ex. 1: ̸ 1 ̸ 1 ̸ 2 ̸ 3 ̸ 2 ̸ 3 1 ̸ 3 ̸ 3 ̸ 1 1 3 ̸ 2 ̸ 1 ̸ 3 ̸ 1 2 . . .

Ex. 2: Code [x1 x2 x1 ⊕ x2] (simplex code for k = 2).

• tsynch
max = 2, indeed:

• can serve x1 and x1 = x2 ⊕ (x1 ⊕ x2);
• can serve x1 and x2;
• can serve x2 and x2 = x1 ⊕ (x1 ⊕ x2);
• cannot serve x1, x1 and x1.

• But tasynch
max = 1, indeed:

• stream of requests: 112 . . .;
• serve x1 (1st server);
• serve x1 = x2 ⊕ (x1 ⊕ x2) (2nd and 3rd server);
• 1st server finishes serving;
• but incoming request x2 cannot be served by 1st server only.
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Hypergraphs and graph-based PIR/batch codes

• Remove edges to make G (E ,V ,S) (t − 1)-left-regular
Girth cannot decrease - no new cycles

• Corresponding (t − 1)-uniform (multi)hypergraph
(“(t−1)-graph”) H(V ,E ): identify e ∈ E with {v | {e, v} ∈ I}

• For PIR codes (bipartite girth ≥ 6 or Berge girth ≥ 3)
equivalently a 2-(|V |, t − 1, 1) packing design. Asymptotically
optimal packing designs exist (for large enough |V |).

• For batch codes (bipartite girth ≥ 8 or Berge girth ≥ 4) use
solution of “(3(t − 1)− 3, 3)-problem” (cf. “Ruzsa-Szemerédi
(6, 3)-problem”):

18



Hypergraph (6, 3)-problem

• [Brown, Erdős and Sós] H(t−1)(n − k ;κ, s): max. number of
hyperedges of an (t − 1)-graph on n − k vertices whose no set
of κ vertices contains s or more hyperedges (fixed t, κ, s)

• [Ruzsa and Szemerédi] essentially solved first open case
H(3)(n − k; 6, 3), known as the (6, 3)-problem

• [Erdős, Frankl and Rödl] essentially found
H(t−1)(n− k; 3(t − 1)− 3, 3), solved (3(t − 1)− 3, 3)-problem
We applied their solution to graph-based batch codes

• W. G. Brown, P. Erdős, and V.T. Sós, “Some extremal problems on r-graphs”, New Directions in the
Theory of Graphs, 3rd Ann. Arbor Conference on Graph Theory, Academic Press, pp. 55–63, 1973.

• W. G. Brown, P. Erdős, and V.T. Sós, “On the existence of triangulated spheres in 3-graphs and
related problems”, Periodica Mathematica Hungaria, vol. 3, pp. 221–228, 1973.

• I.Z. Ruzsa, E. Szemerédi, “Triple systems with no six points carrying three triangles”, Coll. Math. Soc.
Janos Bolyai, no. 18, pp. 939–945, 1978.

• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986.
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Hypergraph (6, 3)-problem

• PROPOSITION (Riet, Skachek, Thomas):

H(t−1)(n − k ; 3(t − 1)− 3, 3) = B(t−1)(n − k ; 4)

where B(t−1)(n − k ; 4) is max. number of hyperedges in a
(t − 1)-graph on (n − k) vertices with Berge girth ≥ 4

• Proof outline. A (t − 1)-graph with no 3 hyperedges
contained in any set of 3(t − 1)− 3 vertices, can be modified
slightly to have no Berge 2- or 3-cycle. A (t − 1)-graph with
no Berge 2- or 3-cycles already has no 3 hyperedges contained
in any set of 3(t − 1)− 3 vertices

• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986.
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Erdős, Frankl and Rödl construction

• Arrange vertices as ⌊(n − k)/(t − 1)⌋-by-(t − 1)-grid.
Hyperedges are lines of t − 1 points with restricted slopes:
Avoid 3-cycles (triangles):

3 slopes, 3 elements (here 4,3,2) of (t − 1)-element arithmetic
progression might give rise to a Berge 3-cycle

21



Erdős, Frankl and Rödl construction

• [Behrend] constructed a big subset of {1, 2, . . . ,N}
containing no 3-term arithmetic progression (a, a+ b, a+ 2b)

• [Erdős, Frankl and Rödl] modified the contstruction, giving a
big subset A ⊆ {1, 2, . . . ,N}, containing no 3 terms of any
(t − 1)-term arithmetic progression

• In the grid, use only lines with slopes from A

• Obtain hypergraph H(V ,E ) without (Berge) 2- or 3-cycles

• The respective bipartite graph G (E ,V ,S) has girth ≥ 8,
producing a graph-based batch code

• F.A. Behrend “On sets of integers which contain no three elements in arithmetic progression”, Nat.
Acad. Sci., no. 23, pp. 331–332, 1946.

• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986.
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Erdős, Frankl and Rödl construction and bound

• Gives k = Ω((n − k)2−ϵ) hyperedges for any ϵ > 0

• Reminder: there are n − k redundant symbols/vertices and
k = (n− k)2−ϵ information symbols/hyperedges and t − 1 ≥ 3

• Redundancy r = n − k = O(k1/(2−ϵ))

• [Erdős, Frankl and Rödl] use (early version) Szemerédi’s
Regularity Lemma to bound number of hyperdges to
o((n − k)2), so lim r√

k
→∞ for redundancy r of graph-based

batch codes

• J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi “The Regularity Lemma and Its
Applications in Graph Theory”, in: G. Khosrovshahi, A. Shokoufandeh, and A. Shokrollahi(eds)
“Theoretical Aspects of Computer Science”, Springer, pp. 84–112, 2002.

• P. Erdös, P. Frankl, V. Rödl, “The asymptotic number of graphs not containing a fixed subgraph and a
problem for hypergraphs having no exponent”, Graphs and Combinatorics, vol. 2, No. 1, pp. 113–121,
1986.
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Case t − 1 = 2

• For 2-graphs (graphs) we need to avoid multiple-edges and
3-cycles

• Max. number of edges in a graph on n − k vertices with no
triangles is ⌊ (n−k)2

4 ⌋ by Mantel’s (Turán’s) Theorem
• The complete bipartite graph H(V ,E ) = K⌊(n−k)/2⌋,⌈(n−k)/2⌉

attains this bound. Example: K3,4 :

• Can construct respective bipartite graph G (E ,V ,S) which is
2-left-regular and has girth ≥ 8

• For graph-based batch codes for t = 3 thus redundancy

r = n − k = Θ(
√
k)

24



Open questions

• [Rao, Vardy] proved redundancy r = Ω(
√
k) for PIR codes for

t=3. Thus this holds for t ≥ 3 and for batch codes for t ≥ 3
• [Vardy, Yaakobi] showed for batch codes r = O(

√
k) for

t = 3, 4 and r = O(
√
k log k) for t ≥ 5

• Note gap for t = 4 between O(
√
k) and ω(

√
k)

general/graph-based batch codes
• For t ≥ 4 find asymptotics of optimal redundancy for

graph-based batch codes
• Is there a gap for t ≥ 5 between optimal redundancy of batch

codes (O(
√
k log k)) and graph-based batch codes

(O(k1/(2−ϵ)) and ω(
√
k))?

• Find good asynch. batch codes other than graph-based

• S. Rao and A. Vardy, “Lower Bound on the Redundancy of PIR Codes”, arXiv:1605.01869, May 2016.

• A. Vardy and E. Yaakobi, “Constructions of batch codes with near-optimal redundancy”, Proc. ISIT,
Barcelona, pp. 1197-1201, July 2016. 25



Functional Batch Code Conjecture

On the Functional Batch Code Conjecture:

• Introduction: data recovery, definitions of batch-type codes

• Simplex code as batch code

• Functional Batch Code Conjecture and related results

• Two results as corollary of Marshall Hall, Jr. 1952, “A
combinatorial problem on abelian groups”

• Rainbow matchings

• Future directions

26



Data recovery

Encoding: data a = (a1, . . . , ak) stored as c = (c1, . . . , cn) = aG

Recovering data:

G =
[

g⊤
1 g⊤

2 · · · g⊤
k

]
If
∑
i∈I

g i = e j = (0, . . . , 0, 1, 0, . . . , 0),

that is, G · χI = e⊤
j , then c · χI = a · G · χI = a · e⊤

j ,

so
∑
i∈I

ci = aj .

So property of interest
∑
i∈I

g i = e j depends on G and not on data!
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Serving a request

Definition

k × n matrix G can serve request sequence/multiset r1, . . . , r t of
(not necessarily distinct) vectors in Fk

2 if
∃ p/w disjoint column index sets I1, . . . , It s.t. r j ∈ ⟨col’s Ij of G ⟩∑

i∈Ij g i = r j , for j = 1, . . . , t over F2

Codes are functional: ∀ individual request r is for lin. comb.

ar⊤ = a1r1 + · · ·+ ak rk

of the data symbols
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Example

G 2 =

[
1 0 1
0 1 1

]
=

[
e1

⊤ e2
⊤ (e1 + e2)

⊤
]

a = (a1, a2) −→ c = aG 2 = (c1, c2, c3) = (a1, a2, a1 + a2)

2-PIR:
e1, e1 ←− {1}, {2, 3} two same requests: one+two columns
2-batch:
e1, e2 ←− {1}, {2} two different requests: one+one column
2-functional-batch:
e1, e1 + e2 ←− {1}, {3}
e1 + e2, e1 + e2 ←− {1, 2}, {3}
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PIR/batch code definitions

An encoder (= a generator matrix G ) is

1. t-PIR

2. t-batch

3. t-odd-batch

4. t-functional-
batch

if G can serve
any request
sequence
consisting of

1. a t-fold repetition of
a unit vector

2. t unit vectors

3. t odd-weight (not in
hyperplane) vectors

4. t arbitrary vectors

Proposition

Any t-PIR code G (the most general, thus each of the previous)
generates a code with minimum distance at least t.
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Simplex code

Binary simplex code, dimension k , length n = 2k − 1,
generator matrix G k ∈ F

k×(2k−1)
2

G k =


1 0 1 0 0 1
0 1 1 0 1 1
0 0 0 1 · · · 1 1
...

...
...

...
...

...
0 0 0 0 1 1

 =
[

1⊤ 2⊤ 3⊤ · · · (2k − 1)⊤
]

Has minimal distance 2k−1, so “optimal” would be t = 2k−1.
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Greedy does not always work (using only recovery sets size
≤ 2)

G 3 =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

t = 2k−1 = 4.

Request: r1 = 1, r2 = 2, r3 = 1, r4 = 2.

Serve r1 = 1 and r2 = 2 by {1} and {2} (cheapest).

Then r3 = 1 by {4, 5} or {6, 7};

and r4 = 2 by {4, 6} or {5, 7}.

Not possible!

Use service {1}, {4, 6}, {2, 3}, {5, 7}. 32



Balister, Győri, Schelp 2011 Conj.: ∀ multiset of vectors of Fk
2 ,

size 2k−1, with sum 0, ∃ partition of Fk
2 into pairs with sums the

elements of the multiset. Still OPEN! Equivalent to:

Yamawaki, Kamabe, Lu 2017; Yohananov, Yaakobi 2022
“Hadamard solution version” Functional Batch Code Conj.: ∀
2k−1 requests from Fk

2 can be served with recovery sets size ≤ 2,
all but ≤ 2 size = 2. I.e. G k is 2k−1-functional-batch.

Hollmann, Khathuria, R., Skachek 2023: G k can serve every
request of 2k−1 vectors of odd weight (or outside a hyperplane).

Lemma in Lember, R. 2024: [G kG k ] can serve every request of
2k vectors of any weight.

Last two also corollaries to M. Hall, Jr. 1952 “A combinatorial
problem on abelian groups” :
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Marshall Hall, Jr.’s theorem (1952) on abelian groups

Theorem Marshall Hall, Jr. 1952: ∀ sequence (ri ), i = 1, . . . , n,
with ri ∈ A, A abelian group, |A| = n,

∑n
i=1 ri = 0, ∃ permutations

(ai )
n
1 and (bi )

n
1 of A such that ri = bi − ai ∀ i = 1, . . . , n.

Proof by quadratic-time algorithm: assign ai , bi to all ri in growing
order of i , at each step possibly changing the assignments for j < i .
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Partial proofs of Conjecture: information/coding theory

• Wang, Kiah, Cassuto 2015 G k is 2k−1-batch

computer proof for k ≤ 8, then induction algorithm

• Hollmann, Khathuria, R., Skachek 2023: G k is
2k−1-odd-batch→ 2k−1-batch, (vectors outside hyperplane)

• Yohananov, Yaakobi 2022: G k is t-functional-batch for
t = ⌊(5/6)2k−1⌋ − k , involved proof

• Lember, R. 2024: [G kG k ] is 2k -functional-batch
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Partial proofs of Conjecture: combinatorics

• Balister, Győri, Schelp 2011 Conjecture, proved simple case
• Preissmann, Mischler 2009 “Seating couples problem”: true

in Fp (instead of Fk
2). Independently proved in Hollmann,

Khathuria, R., Skachek 2023
• Kovács 2023 “Finding a perfect matching of Fn

2 with
prescribed differences”, arXiv, see for references True for:

• few distinct requests;
• most requests equal

• Correia, Pokrovskiy, Sudakov 2023 “Short proofs of
rainbow matching results” t-functional-batch for
t = 2k−1 − O(215k/16) for k large. General result for “full
rainbow matchings” . Probabilistic ∃-proof, weak ≈⇒ strong

• see: Bowtell, Freschi, Kronenberg, Yan 2025+ “A note on
improved bounds for hypergraph rainbow matching problems”
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Conjecture in rainbow matchings

• Conjecture. n matchings (not necessarily disjoint) of size n+ 2
have a rainbow matching of size n.

• Formulated by Gao, Ramadurai, Wanless, Wormald 2021,
noticed by Aharoni, Berger, Chudnovsky, Howard 2019.

• Question. Do n (not necessarily disjoint) matchings of size
n + 1 have a rainbow matching of size n?

• Known counterexamples from
∑2k

i=2 r i = 0 ⇒ since∑2k
i=1 r i = 0, we have r1 = 0. E

• No different counterexamples ⇒ Functional Batch Code
Conjecture: For ∀ request r i take new copies of ∀ edges aibi

with r i = ai + bi to form i th matching.
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Ryser-Brualdi-Stein and generalizations

↓ Stronger
• Ryser-Brualdi-Stein Conj: ∀ partition of edge-set of Kn,n

into n matchings, ∃ rainbow matching size n − 1
Montgomery 2023+: true for large even n

• Matchings may intersect, not on same vertex set:
Aharoni, Berger 2009 Conj: ∀ n matchings size n in
bipartite graph, ∃ rainbow matching size n − 1

• Graph need not be bipartite: Aharoni, Berger 2009 (weak)
Conj: ∀ n matchings size n, ∃ rainbow matching size n − 1

• Need full rainbow matching: Aharoni, Berger, Chudnovsky,
Howard, Seymour 2019; Gao, Ramadurai, Wanless,
Wormald 2021 Conj: ∀ n matchings size n + 2,

∃ rainbow matching size n (strong)
Stronger if size n + 1: add disjoint edge e to all matchings
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Conclusion

• The Functional Batch Code Conjecture or the conjecture that
G k is (optimal) 2k−1-functional-batch is open and very
interesting, and needs everyone’s attention!

See also our DCC paper, or also on arXiv: Hollmann, Khathuria,
R., Skachek 2023 “On some batch code properties of the simplex
code” Conjectures on abelian groups; application of Alon’s
Nullstellensatz.

Lember, R. 2024 “Equal requests are asymptotically hardest for
data recovery”, e.g. arXiv, probabilistic results, 1

2 -fractional
functional batch code conjecture proof: [G kG k ] serves 2k requests

THANK YOU! Ago-Erik Riet, Univ. of Tartu, ago-erik.riet @ ut.ee
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Odd-batch and 1
2-fractional-batch as corollaries

Odd-batch (outside hyperplane) unpublished proof: For hyperplane
H ⊆ Fk

2 , i.e. (k − 1)-dim. linear subspace, i.e. Fk
2 = H ∪ (H + a),

given sequence r1, . . . , r2k−1 ∈ H + a, let r ′i = r i − a, i < 2k−1,
r ′2k−1 = −

∑
i<2k−1 r ′i . Get permutations (y ′

i ), (x
′
i ) of H with

r ′i = y ′
i − x ′

i . Then ∀i : x i = x ′
i ∈ H, ∀i : y i = y ′

i + a ∈ H + a
are all distinct, and r i = y i − x i , i < 2k−1. Adding fixed b to each
x i , y i , w.m.a. x2k−1 = 0, r2k−1 = y2k−1 . Serve from G k .

1
2 -fractional-batch (Lember, R. 2024) Given request sequence
r1, . . . , r2k ∈ Fk

2 , let r ′i = r i , i < 2k−1, r ′2k−1 = −
∑

i<2k−1 r ′i . Get
permutations (y ′

i ), (x
′
i ) of Fk

2 with r ′i = y ′
i − x ′

i . Then letting
x i = x ′

i + b, y i = y ′
i + b for such fixed b that y2k = r2k , we have

r i = y i − x i , ∀i < 2k and r2k = y2k . Serve from two copies of G k .
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