
Helger Lipmaa, April 8, 2025

Zero-Knowledge Proofs And
ZK-SNARKs (2):
Concrete Protocols
Foundations Seminar

Up To Now

Intermediate Representation (Polynomial) Interactive Oracle Proof

Non-
cryptographic
techniques

Polynomial
commitment
scheme

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Up To Now
• We explored the current high-level landscape of zk-SNARKs

Intermediate Representation (Polynomial) Interactive Oracle Proof

Non-
cryptographic
techniques

Polynomial
commitment
scheme

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

• Low-degree extensions = interpolating polynomials

Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

• Low-degree extensions = interpolating polynomials

• We will explain interpolation, omit a.c. (not enough time)

Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

• Low-degree extensions = interpolating polynomials

• We will explain interpolation, omit a.c. (not enough time)

• Simplest possible PIOP: Zero Check

Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

• Low-degree extensions = interpolating polynomials

• We will explain interpolation, omit a.c. (not enough time)

• Simplest possible PIOP: Zero Check

• More complicated PIOP: Product Check

Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

• Low-degree extensions = interpolating polynomials

• We will explain interpolation, omit a.c. (not enough time)

• Simplest possible PIOP: Zero Check

• More complicated PIOP: Product Check

• Efficiency of product check

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves
• Small field can cause problems: special-soundness, knowledge error

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves
• Small field can cause problems: special-soundness, knowledge error

• Currently, we use univariate polynomials

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves
• Small field can cause problems: special-soundness, knowledge error

• Currently, we use univariate polynomials
• Alternative: multilinear polynomials // not this time

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves
• Small field can cause problems: special-soundness, knowledge error

• Currently, we use univariate polynomials
• Alternative: multilinear polynomials // not this time

• Notation , : univariate polynomials over of degree ,𝔽≤n[X] 𝔽≤n[X] 𝔽 ≤ n < n

Mathematical Setting

• is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order: with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves
• Small field can cause problems: special-soundness, knowledge error

• Currently, we use univariate polynomials
• Alternative: multilinear polynomials // not this time

• Notation , : univariate polynomials over of degree ,𝔽≤n[X] 𝔽≤n[X] 𝔽 ≤ n < n
• Input size , companies are pushing for n ≥ 224 n ≥ 228

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

• // are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

• // are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

• is “FFT-friendly”: 𝔽 232 ∣ (|𝔽 | − 1)

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

• // are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

• is “FFT-friendly”: 𝔽 232 ∣ (|𝔽 | − 1)
• Exists : mult. subgroup of of order ℍ = ⟨ω⟩ = {ωi : i ∈ [0,n − 1]} 𝔽* n

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

• // are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

• is “FFT-friendly”: 𝔽 232 ∣ (|𝔽 | − 1)
• Exists : mult. subgroup of of order ℍ = ⟨ω⟩ = {ωi : i ∈ [0,n − 1]} 𝔽* n
• FFT in field opsf(X) = ∑n−1

i=0 fi(X) ↦ (f(ω0), …, f(ωn−1)) O(n log n)

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

• // are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

• is “FFT-friendly”: 𝔽 232 ∣ (|𝔽 | − 1)
• Exists : mult. subgroup of of order ℍ = ⟨ω⟩ = {ωi : i ∈ [0,n − 1]} 𝔽* n
• FFT in field opsf(X) = ∑n−1

i=0 fi(X) ↦ (f(ω0), …, f(ωn−1)) O(n log n)

• Interpolation in f.o.(f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X) O(n log n)

Reminder: FFT (NTT)

• FFT = multipoint evaluation: f(X) = ∑n−1
i=0 fi(X) ↦ (f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: (f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

• // are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

• is “FFT-friendly”: 𝔽 232 ∣ (|𝔽 | − 1)
• Exists : mult. subgroup of of order ℍ = ⟨ω⟩ = {ωi : i ∈ [0,n − 1]} 𝔽* n
• FFT in field opsf(X) = ∑n−1

i=0 fi(X) ↦ (f(ω0), …, f(ωn−1)) O(n log n)

• Interpolation in f.o.(f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X) O(n log n)

• => almost all univariate PIOP based SNARKs use such fields

Accept/reject
based on

randomizers and
queried evaluations

Reminder: Polynomial IOP
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

𝗑, 𝗐 = a ∈ 𝔽n

Accept/reject
based on

randomizers and
queried evaluations

Reminder: Polynomial IOP
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

𝗑, 𝗐 = a ∈ 𝔽n
Oracle is trusted to

give some guarantees,
like deg(fi) ≤ n

Zero Check

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

• "Public input": oracle to a ∈ 𝔽n

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

• "Public input": oracle to a ∈ 𝔽n

• Goal: The prover aims to convice the verifier is zero vectora = 0n

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

• "Public input": oracle to a ∈ 𝔽n

• Goal: The prover aims to convice the verifier is zero vectora = 0n

• Formally: prove for (𝗑, 𝗐) ∈ ℛ0 ℛ0 := {(◼, a) : 𝖤𝗇𝖼(a) ∈ ◼ ∧ a = 0n}

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

• "Public input": oracle to a ∈ 𝔽n

• Goal: The prover aims to convice the verifier is zero vectora = 0n

• Formally: prove for (𝗑, 𝗐) ∈ ℛ0 ℛ0 := {(◼, a) : 𝖤𝗇𝖼(a) ∈ ◼ ∧ a = 0n}
• However, we have PIOP, so oracle contains a polynomial

First PIOP: Zero Check

• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

• "Public input": oracle to a ∈ 𝔽n

• Goal: The prover aims to convice the verifier is zero vectora = 0n

• Formally: prove for (𝗑, 𝗐) ∈ ℛ0 ℛ0 := {(◼, a) : 𝖤𝗇𝖼(a) ∈ ◼ ∧ a = 0n}
• However, we have PIOP, so oracle contains a polynomial
• We will explain that next…

Zero Check

• Zero Check is a very basic check

Motivation

Zero Check

• Zero Check is a very basic check

• Underlies essentially anything else

Motivation

Zero Check

• Zero Check is a very basic check

• Underlies essentially anything else

• Example: a = b ⇔ a − b = 0

Motivation

Zero Check

• Zero Check is a very basic check

• Underlies essentially anything else

• Example: a = b ⇔ a − b = 0

• a + b = c ⇔ a + b − c = 0

Motivation

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

• and its inverse () are bijective, efficiently computable𝖤𝗇𝖼 𝖤𝗇𝖼−1 = 𝖥𝖥𝖳

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

• and its inverse () are bijective, efficiently computable𝖤𝗇𝖼 𝖤𝗇𝖼−1 = 𝖥𝖥𝖳
• Zero check: iff for all a = 0 ̂a(ωi−1) = 0 i ∈ [1,n]

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

• and its inverse () are bijective, efficiently computable𝖤𝗇𝖼 𝖤𝗇𝖼−1 = 𝖥𝖥𝖳
• Zero check: iff for all a = 0 ̂a(ωi−1) = 0 i ∈ [1,n]
• If , the latter holds iff ̂a(X) ∈ 𝔽≤n−1[X] ̂a(X) = 0

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

• and its inverse () are bijective, efficiently computable𝖤𝗇𝖼 𝖤𝗇𝖼−1 = 𝖥𝖥𝖳
• Zero check: iff for all a = 0 ̂a(ωi−1) = 0 i ∈ [1,n]
• If , the latter holds iff ̂a(X) ∈ 𝔽≤n−1[X] ̂a(X) = 0

• Zero Check with oracles for is really trivial𝔽≤n−1[X]

Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret as polynomial constrainta = 0
• : map to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

• and its inverse () are bijective, efficiently computable𝖤𝗇𝖼 𝖤𝗇𝖼−1 = 𝖥𝖥𝖳
• Zero check: iff for all a = 0 ̂a(ωi−1) = 0 i ∈ [1,n]
• If , the latter holds iff ̂a(X) ∈ 𝔽≤n−1[X] ̂a(X) = 0

• Zero Check with oracles for is really trivial𝔽≤n−1[X]
• Assuming the oracle guarantees the polynomial has "low degree” ≤ n − 1

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact 🤔̂a(X) = 0

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact 🤔̂a(X) = 0
• Sending to verifier is not efficient̂a(X)

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact 🤔̂a(X) = 0
• Sending to verifier is not efficient̂a(X)
• Hint 1: we can query the values of at any location̂a(X)

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact 🤔̂a(X) = 0
• Sending to verifier is not efficient̂a(X)
• Hint 1: we can query the values of at any location̂a(X)
• Hint 2: the verifier can toss random coins

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact 🤔̂a(X) = 0
• Sending to verifier is not efficient̂a(X)
• Hint 1: we can query the values of at any location̂a(X)
• Hint 2: the verifier can toss random coins
• Idea 💡: test that for random sampled by the verifier̂a(r) = 0 r

Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact 🤔̂a(X) = 0
• Sending to verifier is not efficient̂a(X)
• Hint 1: we can query the values of at any location̂a(X)
• Hint 2: the verifier can toss random coins
• Idea 💡: test that for random sampled by the verifier̂a(r) = 0 r

Why does this idea work?

Schwartz-Zippel Lemma

• Lemma. Let be a non-zero polynomial of degree . Let
be sampled uniformly at random. The probability that is at most

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Schwartz-Zippel Lemma

• Lemma. Let be a non-zero polynomial of degree . Let
be sampled uniformly at random. The probability that is at most

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since has at most rootsf(X) n

Low-degree polynomials
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Schwartz-Zippel Lemma

• Lemma. Let be a non-zero polynomial of degree . Let
be sampled uniformly at random. The probability that is at most

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since has at most rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽

Low-degree polynomials
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Schwartz-Zippel Lemma

• Lemma. Let be a non-zero polynomial of degree . Let
be sampled uniformly at random. The probability that is at most

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since has at most rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽
• Lemma (Schwartz-Zippel). Let be a non-zero polynomial of

total degree . Let be a finite subset of . Let be sampled
uniformly at random. Then the probability that is at most .

f(X) ∈ 𝔽[X1, …, Xm]
n ≥ 0 S 𝔽 r1, …, rm ←$ S

f(r1, …, rm) = 0 n/ |S |

Low-degree polynomials
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Schwartz-Zippel Lemma

• Lemma. Let be a non-zero polynomial of degree . Let
be sampled uniformly at random. The probability that is at most

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since has at most rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽
• Lemma (Schwartz-Zippel). Let be a non-zero polynomial of

total degree . Let be a finite subset of . Let be sampled
uniformly at random. Then the probability that is at most .

f(X) ∈ 𝔽[X1, …, Xm]
n ≥ 0 S 𝔽 r1, …, rm ←$ S

f(r1, …, rm) = 0 n/ |S |
• See https://en.wikipedia.org/wiki/Schwartz-Zippel_lemma for a proof

Low-degree polynomials
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Schwartz-Zippel Lemma

• Lemma. Let be a non-zero polynomial of degree . Let
be sampled uniformly at random. The probability that is at most

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since has at most rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽
• Lemma (Schwartz-Zippel). Let be a non-zero polynomial of

total degree . Let be a finite subset of . Let be sampled
uniformly at random. Then the probability that is at most .

f(X) ∈ 𝔽[X1, …, Xm]
n ≥ 0 S 𝔽 r1, …, rm ←$ S

f(r1, …, rm) = 0 n/ |S |
• See https://en.wikipedia.org/wiki/Schwartz-Zippel_lemma for a proof

• Schwartz-Zippel is hugely important in constructing efficient zk-SNARKs

• We mostly just use the first lemma (but still call it Schwartz-Zippel)

Low-degree polynomials
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool
• Intuition why so useful:

-4 -2 2 4

5

10

15

20

25

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool
• Intuition why so useful:

• If and differ at a single point, they differ on
an overwhelming faction of points of

f(X) ∈ 𝔽≤n[X] g(X) ∈ 𝔽≤n[X]
𝔽

-4 -2 2 4

5

10

15

20

25

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool
• Intuition why so useful:

• If and differ at a single point, they differ on
an overwhelming faction of points of

f(X) ∈ 𝔽≤n[X] g(X) ∈ 𝔽≤n[X]
𝔽

-4 -2 2 4

5

10

15

20

25

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool
• Intuition why so useful:

• If and differ at a single point, they differ on
an overwhelming faction of points of

f(X) ∈ 𝔽≤n[X] g(X) ∈ 𝔽≤n[X]
𝔽

• Thus, if prover cheats even at one point, the verifier can discover the
cheating (w.h.p.), querying a random point of the polynomial

-4 -2 2 4

5

10

15

20

25

On Schwartz-Zippel

• Degree mantra: if then
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool
• Intuition why so useful:

• If and differ at a single point, they differ on
an overwhelming faction of points of

f(X) ∈ 𝔽≤n[X] g(X) ∈ 𝔽≤n[X]
𝔽

• Thus, if prover cheats even at one point, the verifier can discover the
cheating (w.h.p.), querying a random point of the polynomial

• “Smears" around the error — akin to error-correcting codes

“Trivial” Zero Check PIOP
𝗑 = ∅, 𝗐 = a ∈ 𝔽n

“Trivial” Zero Check PIOP
𝗑 = ∅, 𝗐 = a ∈ 𝔽n

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝖥𝖥𝖳(0) = 0

“Trivial” Zero Check PIOP
𝗑 = ∅, 𝗐 = a ∈ 𝔽n

r ←$ 𝔽

ā ← ̂a(r)

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝖥𝖥𝖳(0) = 0

“Trivial” Zero Check PIOP
𝗑 = ∅, 𝗐 = a ∈ 𝔽n

Check ā = 0

r ←$ 𝔽

ā ← ̂a(r)

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝖥𝖥𝖳(0) = 0

“Trivial” Zero Check PIOP
𝗑 = ∅, 𝗐 = a ∈ 𝔽n

Check ā = 0

r ←$ 𝔽

ā ← ̂a(r)

̂a(X)
 ≤ n − 1

• Note: the goal of the protocol is to check

• This protocol makes little sense if nothing about is given

as an input to the protocol // what exactly is = ?

• Solution: an oracle is a part of the input

•

a = 0
a

0
[[̂a(X)]]

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X)]] ∧ 𝗐 = 𝖥𝖥𝖳(̂a(X)) ∧ 𝗐 = 0}

̂a(X) ← 𝖨𝖥𝖥𝖳(0) = 0

“Trivial” Zero Check PIOP
, 𝗑 = [[̂a(X)]] 𝗐 = a = 0 ∈ 𝔽n

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(0) = 0

 𝗑 = [[̂a(X)]]

“Trivial” Zero Check PIOP
, 𝗑 = [[̂a(X)]] 𝗐 = a = 0 ∈ 𝔽n

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(0) = 0

 𝗑 = [[̂a(X)]]

r ←$ 𝔽

ā ← ̂a(r)
Zero Check

“Trivial” Zero Check PIOP
, 𝗑 = [[̂a(X)]] 𝗐 = a = 0 ∈ 𝔽n

Check ā = 0

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(0) = 0

 𝗑 = [[̂a(X)]]

r ←$ 𝔽

ā ← ̂a(r)
Zero Check

“Trivial” Zero Check PIOP
, 𝗑 = [[̂a(X)]] 𝗐 = a = 0 ∈ 𝔽n

Check ā = 0

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(0) = 0

 𝗑 = [[̂a(X)]]

•

• In general, PIOP is a proof of knowledge of knowing the

contents of the oracles that satisfy some relation

• In zk-SNARKs, when replacing oracles with commitments,

we get a proof of knowledge of knowing the contents of
the commitments that satisfy some relation

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X)]] ∧ 𝗐 = 𝖥𝖥𝖳(̂a(X)) ∧ 𝗐 = 0}

r ←$ 𝔽

ā ← ̂a(r)
Zero Check

Product Check

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n
• Product check has virtual oracle of degree ̂a(X)b̂(X) − ̂c(X) ≤ 2n − 1

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n
• Product check has virtual oracle of degree ̂a(X)b̂(X) − ̂c(X) ≤ 2n − 1
• Does not fit into -degree polynomial oracle!n

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n
• Product check has virtual oracle of degree ̂a(X)b̂(X) − ̂c(X) ≤ 2n − 1
• Does not fit into -degree polynomial oracle!n

• Need to modify zero check to work with high-degree “virtual" oracles

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n
• Product check has virtual oracle of degree ̂a(X)b̂(X) − ̂c(X) ≤ 2n − 1
• Does not fit into -degree polynomial oracle!n

• Need to modify zero check to work with high-degree “virtual" oracles
• We will give a concrete example for “product check”

“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree- polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n
• Product check has virtual oracle of degree ̂a(X)b̂(X) − ̂c(X) ≤ 2n − 1
• Does not fit into -degree polynomial oracle!n

• Need to modify zero check to work with high-degree “virtual" oracles
• We will give a concrete example for “product check”
• In addition, adding ZK will increase the degree of “virtual" oracles

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write

 for a polynomial and remainder .
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write

 for a polynomial and remainder .
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽
• Evaluating LHS and RHS at , we get , thus X = s f(s) = r r = 0

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write

 for a polynomial and remainder .
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽
• Evaluating LHS and RHS at , we get , thus X = s f(s) = r r = 0
• Thus, and f(X) = q(X)(X − s) (X − s) ∣ f(X)

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write

 for a polynomial and remainder .
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽
• Evaluating LHS and RHS at , we get , thus X = s f(s) = r r = 0
• Thus, and f(X) = q(X)(X − s) (X − s) ∣ f(X)

• Lemma. If and vanishes on , then
for some

deg(f) = N > n − 1 f(X) 𝒮 f(X) = q(X)Z𝒮(X)
q(X) ∈ 𝔽≤N−n[X]

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write

 for a polynomial and remainder .
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽
• Evaluating LHS and RHS at , we get , thus X = s f(s) = r r = 0
• Thus, and f(X) = q(X)(X − s) (X − s) ∣ f(X)

• Lemma. If and vanishes on , then
for some

deg(f) = N > n − 1 f(X) 𝒮 f(X) = q(X)Z𝒮(X)
q(X) ∈ 𝔽≤N−n[X]

• is unique, minimal-degree, monic, non-zero poly that vanishes exactly on Z𝒮 𝒮

Vanishing Polynomials
-1 1 2 3 4

-5

5

10

15

• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
• for , otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial that vanishes on has all as rootsf(X) 𝒮 si ∈ 𝒮
• Since for all => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write

 for a polynomial and remainder .
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽
• Evaluating LHS and RHS at , we get , thus X = s f(s) = r r = 0
• Thus, and f(X) = q(X)(X − s) (X − s) ∣ f(X)

• Lemma. If and vanishes on , then
for some

deg(f) = N > n − 1 f(X) 𝒮 f(X) = q(X)Z𝒮(X)
q(X) ∈ 𝔽≤N−n[X]

• is unique, minimal-degree, monic, non-zero poly that vanishes exactly on Z𝒮 𝒮
• Important fact: since Zℍ(X) = ∏i (X − ωi−1) = Xn − 1 (ωi−1)n = ωn(i−1) = 1

• ∀i ∈ [1,n] . aibi = ci

Polynomial View of
Product Check

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0

Polynomial View of
Product Check

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

Polynomial View of
Product Check

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

// , etĉa(X) := ∑n
i=1 aiℓi(X) = 𝖨𝖥𝖥𝖳(a) ∈ 𝔽≤n−1[X]

Polynomial View of
Product Check

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

// , etĉa(X) := ∑n
i=1 aiℓi(X) = 𝖨𝖥𝖥𝖳(a) ∈ 𝔽≤n−1[X]

ó vanishes on f(X) := ̂a(X)b̂(X) − ̂c(X) ∈ 𝔽≤2n−2[X] ℍ

Polynomial View of
Product Check

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

// , etĉa(X) := ∑n
i=1 aiℓi(X) = 𝖨𝖥𝖥𝖳(a) ∈ 𝔽≤n−1[X]

ó vanishes on f(X) := ̂a(X)b̂(X) − ̂c(X) ∈ 𝔽≤2n−2[X] ℍ
ó Zℍ(X) ∣ f(X)

Polynomial View of
Product Check

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

// , etĉa(X) := ∑n
i=1 aiℓi(X) = 𝖨𝖥𝖥𝖳(a) ∈ 𝔽≤n−1[X]

ó vanishes on f(X) := ̂a(X)b̂(X) − ̂c(X) ∈ 𝔽≤2n−2[X] ℍ
ó Zℍ(X) ∣ f(X)
ó (1)∃q(X) ∈ 𝔽≤n−2[X] . f(X) = q(X)Zℍ(X)

Polynomial View of
Product Check

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

// , etĉa(X) := ∑n
i=1 aiℓi(X) = 𝖨𝖥𝖥𝖳(a) ∈ 𝔽≤n−1[X]

ó vanishes on f(X) := ̂a(X)b̂(X) − ̂c(X) ∈ 𝔽≤2n−2[X] ℍ
ó Zℍ(X) ∣ f(X)
ó (1)∃q(X) ∈ 𝔽≤n−2[X] . f(X) = q(X)Zℍ(X)

• Prover needs to prove that it “knows” and satisfying (1)̂a(X), b̂(X), ̂c(X) q(X)

Polynomial View of
Product Check

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

• ∀i ∈ [1,n] . aibi = ci
ó∀i ∈ [1,n] . aibi − ci = 0
ó ∀i ∈ [1,n] . ̂a(ωi−1)b̂(ωi−1) − ̂c(ωi−1) = 0

// , etĉa(X) := ∑n
i=1 aiℓi(X) = 𝖨𝖥𝖥𝖳(a) ∈ 𝔽≤n−1[X]

ó vanishes on f(X) := ̂a(X)b̂(X) − ̂c(X) ∈ 𝔽≤2n−2[X] ℍ
ó Zℍ(X) ∣ f(X)
ó (1)∃q(X) ∈ 𝔽≤n−2[X] . f(X) = q(X)Zℍ(X)

• Prover needs to prove that it “knows” and satisfying (1)̂a(X), b̂(X), ̂c(X) q(X)

Polynomial View of
Product Check

• NB! This is a standard way of using univariate
polynomials —need to internalise it!

Interpolation/polynomial evaluation:
fast algorithms to get from witness to

polynomial encoding and back

ℛ = {(𝗑, 𝗐) : 𝗑 = [[̂a(X), b̂(X), ̂c(X)]] ∧ 𝗐 = (a, b, c) = (𝖥𝖥𝖳(̂a(X)), 𝖥𝖥𝖳(b̂(X)), 𝖥𝖥𝖳(̂c(X))) ∧ ∀i ∈ [1,n]aibi = ci}

Product Check PIOP

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

Product Check PIOP

q(X)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

Zero Check
for virtual
oracle [[g(X)]]

Product Check PIOP

q(X)
r ←$ 𝔽

ā ← ̂a(r), b̄ ← b̂(r)
c̄ ← ̂c(r), q̄ ← q(r)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

Zero Check
for virtual
oracle [[g(X)]]

Product Check PIOP

q(X)

Check :
•
• Check

g(r) =? 0
Zℍ(r) ← rn − 1

āb̄ − c̄ =? q̄Zℍ(r)

r ←$ 𝔽

ā ← ̂a(r), b̄ ← b̂(r)
c̄ ← ̂c(r), q̄ ← q(r)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

Zero Check
for virtual
oracle [[g(X)]]

Product Check PIOP

q(X)

Check :
•
• Check

g(r) =? 0
Zℍ(r) ← rn − 1

āb̄ − c̄ =? q̄Zℍ(r)

r ←$ 𝔽

ā ← ̂a(r), b̄ ← b̂(r)
c̄ ← ̂c(r), q̄ ← q(r)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

• is a virtual oracle

• Not kept in an oracle but computed from other oracles

• V “virtually" queries :

• query ,

• set

• check

[[g(X)]]

[[g(X)]]
ā ← ̂a(r), b̄ ← b̂(r), c̄ ← ̂c(r) q̄ ← q(r)

g(r) ← āb̄ − c̄ − q̄𝖹ℍ(r)
g(r) =? 0

Efficiency

Zero Check
for virtual
oracle [[g(X)]]

Product Check: Efficiency

q(X)
r ←$ 𝔽

ā ← ̂a(r), b̄ ← b̂(r)
c̄ ← ̂c(r), q̄ ← q(r)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

• One polynomial multiplication:

• field ops // includes FFT & inverse FFT

• 3 interpolations: , …

• Uses inverse FFT

• Total computation: field ops

f(X) := ̂a(X)b̂(X) − ̂c(X)
O(n log n)

a ↦ ̂a(X)

O(n log n)

Check :
•
• Check

g(r) =? 0
Zℍ(r) ← rn − 1

āb̄ − c̄ =? q̄Zℍ(r)

Zero Check
for virtual
oracle [[g(X)]]

Product Check: Efficiency

q(X)
r ←$ 𝔽

ā ← ̂a(r), b̄ ← b̂(r)
c̄ ← ̂c(r), q̄ ← q(r)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

• One polynomial multiplication:

• field ops // includes FFT & inverse FFT

• 3 interpolations: , …

• Uses inverse FFT

• Total computation: field ops

f(X) := ̂a(X)b̂(X) − ̂c(X)
O(n log n)

a ↦ ̂a(X)

O(n log n)

• Computing // f.o.

• +2 multiplications

• Total time field ops

Zℍ(r) O(log n)

O(log n)

Check :
•
• Check

g(r) =? 0
Zℍ(r) ← rn − 1

āb̄ − c̄ =? q̄Zℍ(r)

Zero Check
for virtual
oracle [[g(X)]]

Product Check: Efficiency

q(X)
r ←$ 𝔽

ā ← ̂a(r), b̄ ← b̂(r)
c̄ ← ̂c(r), q̄ ← q(r)

̂a(X), b̂(X), ̂c(X)
 ≤ n − 1

̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(a)

b̂(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(b)
̂c(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(c)

q(X) ← f(X)/Zℍ(X)

Virtual oracle:
f(X) := ̂a(X)b̂(X) − ̂c(X)

g(X) := f(X) − q(X)𝖹ℍ(X)

𝗑 = [[̂a(X)], b̂(X), ̂c(X)]]
𝗑 = [[̂a(X), b̄(X), c̄(X)]], 𝗐 = a, b, c ∈ 𝔽n

Check :
•
• Check

g(r) =? 0
Zℍ(r) ← rn − 1

āb̄ − c̄ =? q̄Zℍ(r)

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

FFT And ZK Applications

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

• Crucial to understand FFT since it is often prover's dominant cost of PIOPs

FFT And ZK Applications

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

• Crucial to understand FFT since it is often prover's dominant cost of PIOPs
• Also, why FFT is often the bottleneck

FFT And ZK Applications

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

• Crucial to understand FFT since it is often prover's dominant cost of PIOPs
• Also, why FFT is often the bottleneck

• Most applications of FFT run with relatively small inputs

FFT And ZK Applications

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

• Crucial to understand FFT since it is often prover's dominant cost of PIOPs
• Also, why FFT is often the bottleneck

• Most applications of FFT run with relatively small inputs

• In ZK application case, ideally, n ≈ 232

FFT And ZK Applications

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

• Crucial to understand FFT since it is often prover's dominant cost of PIOPs
• Also, why FFT is often the bottleneck

• Most applications of FFT run with relatively small inputs

• In ZK application case, ideally, n ≈ 232

• => IFFT is dominated by field opsn = 232 n
2 log2 n = 16n = 236

FFT And ZK Applications

• In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

• Crucial to understand FFT since it is often prover's dominant cost of PIOPs
• Also, why FFT is often the bottleneck

• Most applications of FFT run with relatively small inputs

• In ZK application case, ideally, n ≈ 232

• => IFFT is dominated by field opsn = 232 n
2 log2 n = 16n = 236

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n

FFT And ZK Applications

FFT: Memory Problems

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least field elementsn = 232

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least field elementsn = 232

• big f.e.: 256 bits, so bytes = 128 GigaBytesn = 232 ⋅ (256/8) = 237

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least field elementsn = 232

• big f.e.: 256 bits, so bytes = 128 GigaBytesn = 232 ⋅ (256/8) = 237

• small f.e.: 32 bits, so bytes = 16 GigaBytesn = 232 ⋅ (32/8) = 234

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least field elementsn = 232

• big f.e.: 256 bits, so bytes = 128 GigaBytesn = 232 ⋅ (256/8) = 237

• small f.e.: 32 bits, so bytes = 16 GigaBytesn = 232 ⋅ (32/8) = 234

• Standard FFT requires more than field elements of memoryn

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least field elementsn = 232

• big f.e.: 256 bits, so bytes = 128 GigaBytesn = 232 ⋅ (256/8) = 237

• small f.e.: 32 bits, so bytes = 16 GigaBytesn = 232 ⋅ (32/8) = 234

• Standard FFT requires more than field elements of memoryn
• And in-place FFT algorithms require more time

FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least field elementsn = 232

• big f.e.: 256 bits, so bytes = 128 GigaBytesn = 232 ⋅ (256/8) = 237

• small f.e.: 32 bits, so bytes = 16 GigaBytesn = 232 ⋅ (32/8) = 234

• Standard FFT requires more than field elements of memoryn
• And in-place FFT algorithms require more time

• Memory locality: butterfly-like memory access causes cache misses

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

2. “Out of bounds” evaluation:

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

2. “Out of bounds” evaluation:
• While the length of the input vector is , the polynomial can be evaluated

on points
N

|𝔽 | ≫ N

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

2. “Out of bounds” evaluation:
• While the length of the input vector is , the polynomial can be evaluated

on points
N

|𝔽 | ≫ N
• This gives one huge freedom in designing more efficient protocols

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

2. “Out of bounds” evaluation:
• While the length of the input vector is , the polynomial can be evaluated

on points
N

|𝔽 | ≫ N
• This gives one huge freedom in designing more efficient protocols

• We will see later that the best “non-P“IOP for Zero Check is far from efficient

Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

2. “Out of bounds” evaluation:
• While the length of the input vector is , the polynomial can be evaluated

on points
N

|𝔽 | ≫ N
• This gives one huge freedom in designing more efficient protocols

• We will see later that the best “non-P“IOP for Zero Check is far from efficient
• Trade-off: in “non-P“IOPs, one can instantiate crypto more efficiently

What Did We Miss?

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
• Adds to costs

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
• Adds to costs
• Prover: e.c. group operations, each group op field operationsO(n) > 256

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
• Adds to costs
• Prover: e.c. group operations, each group op field operationsO(n) > 256
• Verifier: constant number of group operations

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
• Adds to costs
• Prover: e.c. group operations, each group op field operationsO(n) > 256
• Verifier: constant number of group operations
• Crypto part is costly!

What Did We Miss?

• In two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
• Adds to costs
• Prover: e.c. group operations, each group op field operationsO(n) > 256
• Verifier: constant number of group operations
• Crypto part is costly!

• One more seminar: Fiat-Shamir (how to make it non-interactive)

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

• Univariate polynomials => multilinear polynomials: no need to interpolate

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

• Univariate polynomials => multilinear polynomials: no need to interpolate
• GKR protocol => need to cryptographically commit to less values

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

• Univariate polynomials => multilinear polynomials: no need to interpolate
• GKR protocol => need to cryptographically commit to less values
• Lookups => store valid gate I/Os in a table, prove all gate I/Os are in that table

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

• Univariate polynomials => multilinear polynomials: no need to interpolate
• GKR protocol => need to cryptographically commit to less values
• Lookups => store valid gate I/Os in a table, prove all gate I/Os are in that table
• Folding => fold inputs and witnesses together before doing an operation

Way Forward: Efficiency
A very short list

• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

• Univariate polynomials => multilinear polynomials: no need to interpolate
• GKR protocol => need to cryptographically commit to less values
• Lookups => store valid gate I/Os in a table, prove all gate I/Os are in that table
• Folding => fold inputs and witnesses together before doing an operation
• Code&hash-based => using any fields, hash is fast, post-quantum

Way Forward: Security
A very short list

• More stringent security notions

Way Forward: Security
A very short list

• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

Way Forward: Security
A very short list

• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

• Weaker cryptographic assumptions

Way Forward: Security
A very short list

• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

• Weaker cryptographic assumptions
• Weaker elliptic-curve assumptions?

Way Forward: Security
A very short list

• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

• Weaker cryptographic assumptions
• Weaker elliptic-curve assumptions?
• Post-quantum?

Way Forward: Security
A very short list

• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

• Weaker cryptographic assumptions
• Weaker elliptic-curve assumptions?
• Post-quantum?

• It was just found in 2025 that even Fiat-Shamir is not secure in the case of
actually used protocols

Way Forward: Security
A very short list

• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

• Weaker cryptographic assumptions
• Weaker elliptic-curve assumptions?
• Post-quantum?

• It was just found in 2025 that even Fiat-Shamir is not secure in the case of
actually used protocols

• Formal verification and automated security proofs

Way Forward: Applications
A very short list

• Make better ZK for diverse applications

Way Forward: Applications
A very short list

• Make better ZK for diverse applications
• Big right now:

Way Forward: Applications
A very short list

• Make better ZK for diverse applications
• Big right now:
• L2 blockchain, zkRollup

Way Forward: Applications
A very short list

• Make better ZK for diverse applications
• Big right now:
• L2 blockchain, zkRollup
• zkVM

Way Forward: Applications
A very short list

• Make better ZK for diverse applications
• Big right now:
• L2 blockchain, zkRollup
• zkVM
• zkML

Questions?

Important References
• (FFT) James W. Cooley, John W. Tukey: An algorithm for the machine

calculation of complex Fourier series (1965)

• Classic algorithm, many brilliant presentations, including on YouTube

• (Good book on polynomial algorithms) Joachim von zur Gathen, Jürgen
Gerhard: Modern Computer Algebra (3. ed.). Cambridge University
Press 2013

• PIOP:

• Benedikt Bünz, Ben Fisch, Alan Szepieniec. Transparent SNARKs from

DARK compilers (2020)

• Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah

Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal
and Updatable SRS (2020)

