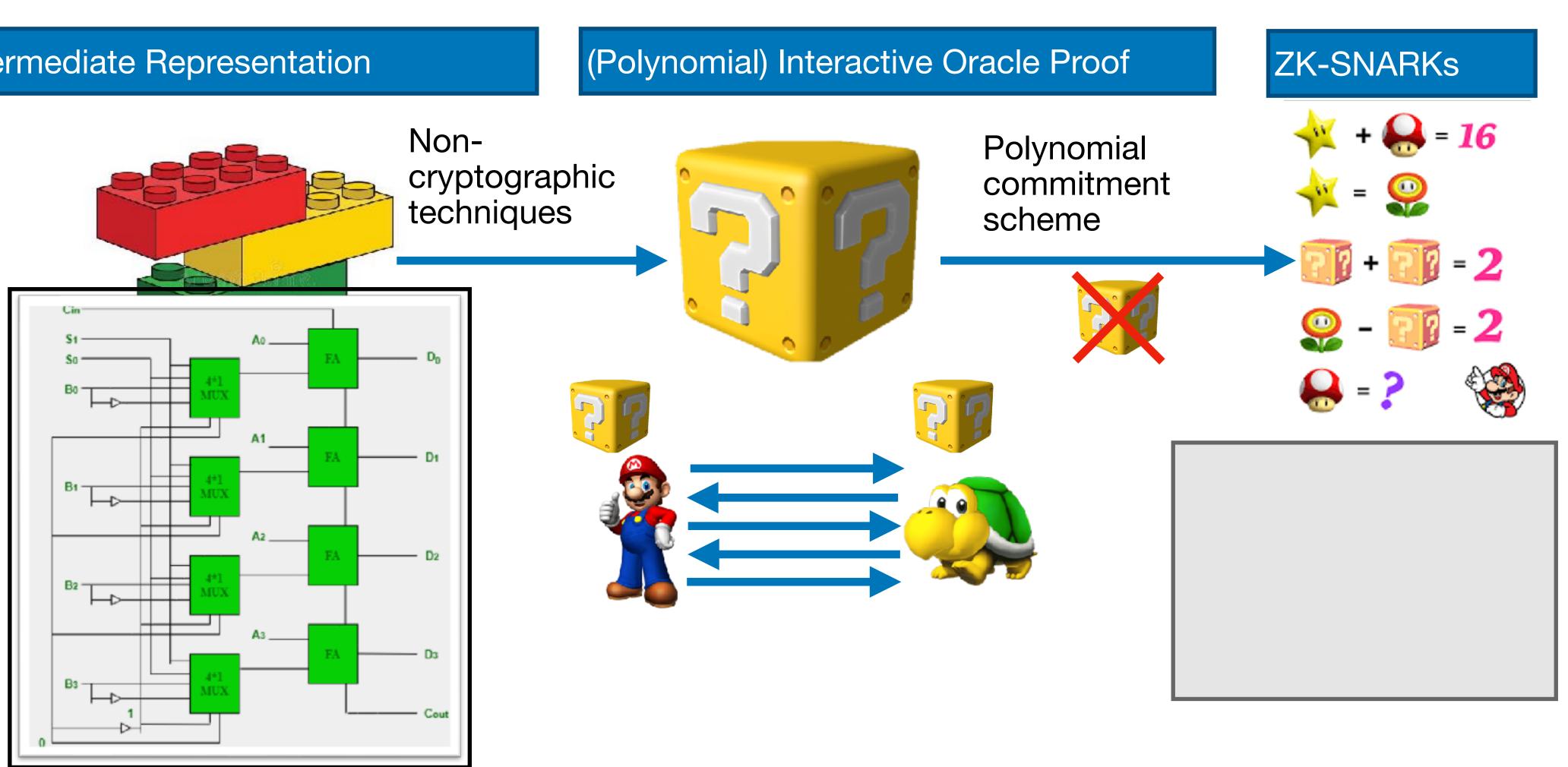
Zero-Knowledge Proofs And ZK-SNARKs (2): Concrete Protocols Foundations Seminar

Helger Lipmaa, April 8, 2025

Up To Now

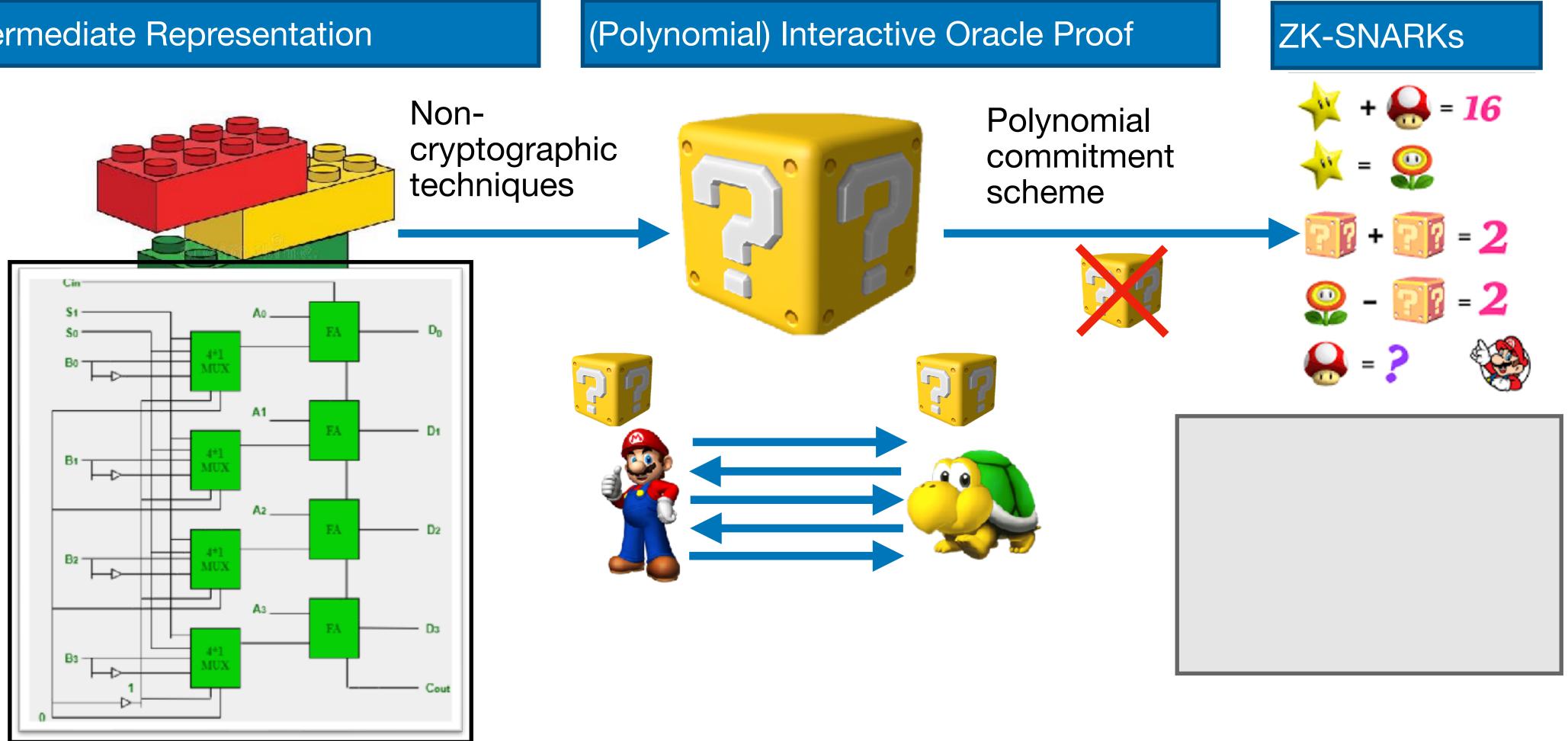
Intermediate Representation



Up To Now

• We explored the current high-level landscape of zk-SNARKs

Intermediate Representation



• Common IR: arithmetic circuits + low-degree extensions

- Common IR: arithmetic circuits + low-degree extensions
 - Low-degree extensions = interpolating polynomials

- Common IR: arithmetic circuits + low-degree extensions
 - Low-degree extensions = interpolating polynomials
 - We will explain interpolation, omit a.c. (not enough time)

- Common IR: arithmetic circuits + low-degree extensions
 - Low-degree extensions = interpolating polynomials
 - We will explain interpolation, omit a.c. (not enough time)
- Simplest possible PIOP: Zero Check

- Common IR: arithmetic circuits + low-degree extensions
 - Low-degree extensions = interpolating polynomials
 - We will explain interpolation, omit a.c. (not enough time)
- Simplest possible PIOP: Zero Check
- More complicated PIOP: Product Check

- Common IR: arithmetic circuits + low-degree extensions
 - Low-degree extensions = interpolating polynomials
 - We will explain interpolation, omit a.c. (not enough time)
- Simplest possible PIOP: Zero Check
- More complicated PIOP: Product Check
- Efficiency of product check

• F is a finite field of prime order $|F| \le 2^{256}$

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible
 - Given setting is easiest to explain, and needed when using elliptic curves

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible
 - Given setting is easiest to explain, and needed when using elliptic curves
 - Small field can cause problems: special-soundness, knowledge error

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible
 - Given setting is easiest to explain, and needed when using elliptic curves Small field can cause problems: special-soundness, knowledge error
- Currently, we use **univariate** polynomials

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible
 - Given setting is easiest to explain, and needed when using elliptic curves
- Small field can cause problems: special-soundness, knowledge error • Currently, we use **univariate** polynomials
 - Alternative: multilinear polynomials // not this time

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible
 - Given setting is easiest to explain, and needed when using elliptic curves
- Small field can cause problems: special-soundness, knowledge error • Currently, we use **univariate** polynomials
 - Alternative: multilinear polynomials // not this time
- **Notation** $\mathbb{F}_{\leq n}[X]$, $\mathbb{F}_{\leq n}[X]$: univariate polynomials over \mathbb{F} of degree $\leq n, < n$

- F is a finite field of prime order $|F| \le 2^{256}$
 - Prime order: $\mathbb{F} = \mathbb{Z}_p = \{0, \dots, p-1\}$ with modular arithmetic
 - Using smaller finite fields is possible
 - Given setting is easiest to explain, and needed when using elliptic curves
- Small field can cause problems: special-soundness, knowledge error • Currently, we use **univariate** polynomials
 - Alternative: multilinear polynomials // not this time
- **Notation** $\mathbb{F}_{\leq n}[X]$, $\mathbb{F}_{< n}[X]$: univariate polynomials over \mathbb{F} of degree $\leq n, < n$
- Input size $n \ge 2^{24}$, companies are pushing for $n \ge 2^{28}$

• **FFT** = multipoint evaluation: $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$

• **FFT** = multipoint evaluation: $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$ • Inverse FFT = interpolation: $(f(\omega_0), \dots, f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

- - $f(X) \leftarrow \sum_{i=0}^{n} f(\omega^{i}) \ell_{i}(X) // \ell_{i}(X)$ are Lagrange polynomials

• **FFT** = multipoint evaluation: $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$ • Inverse FFT = interpolation: $(f(\omega_0), \dots, f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

- - $f(X) \leftarrow \sum_{i=0}^{n} f(\omega^{i}) \ell_{i}(X) // \ell_{i}(X)$ are Lagrange polynomials
- Fis "FFT-friendly": 2^{32} (F 1)

• **FFT** = multipoint evaluation: $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$ • Inverse FFT = interpolation: $(f(\omega_0), \dots, f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

- **FFT** = multipoint evaluation: f(X) =
- Inverse FFT = interpolation: $(f(\omega_0))$
 - $f(X) \leftarrow \sum_{i=0}^{n} f(\omega^{i}) \ell_{i}(X) // \ell_{i}(X)$ are Lagrange polynomials
- Fis "FFT-friendly": 2^{32} (FFT-1)

$$\sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$$

, ..., $f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

• Exists $\mathbb{H} = \langle \omega \rangle = \{ \omega^i : i \in [0, n-1] \}$: mult. subgroup of \mathbb{F}^* of order n

- **FFT** = multipoint evaluation: f(X) =
- Inverse FFT = interpolation: $(f(\omega_0))$
 - $f(X) \leftarrow \sum_{i=0}^{n} f(\omega^{i}) \ell_{i}(X) // \ell_{i}(X)$ are Lagrange polynomials
- Fis "FFT-friendly": 2^{32} (FFT-1)

$$\sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$$

, ..., $f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

• Exists $\mathbb{H} = \langle \omega \rangle = \{ \omega^i : i \in [0, n-1] \}$: mult. subgroup of \mathbb{F}^* of order n• FFT $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega^0), \dots, f(\omega^{n-1}))$ in $O(n \log n)$ field ops

- **FFT** = multipoint evaluation: f(X) =
- Inverse FFT = interpolation: $(f(\omega_0))$
 - $f(X) \leftarrow \sum_{i=0}^{n} f(\omega^{i}) \ell_{i}(X) // \ell_{i}(X)$ are Lagrange polynomials
- Fis "FFT-friendly": 2^{32} (FFT-1)

$$\sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$$

, ..., $f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

• Exists $\mathbb{H} = \langle \omega \rangle = \{ \omega^i : i \in [0, n-1] \}$: mult. subgroup of \mathbb{F}^* of order n• FFT $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega^0), \dots, f(\omega^{n-1}))$ in $O(n \log n)$ field ops • Interpolation $(f(\omega^0), ..., f(\omega^{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$ in $O(n \log n)$ f.o.

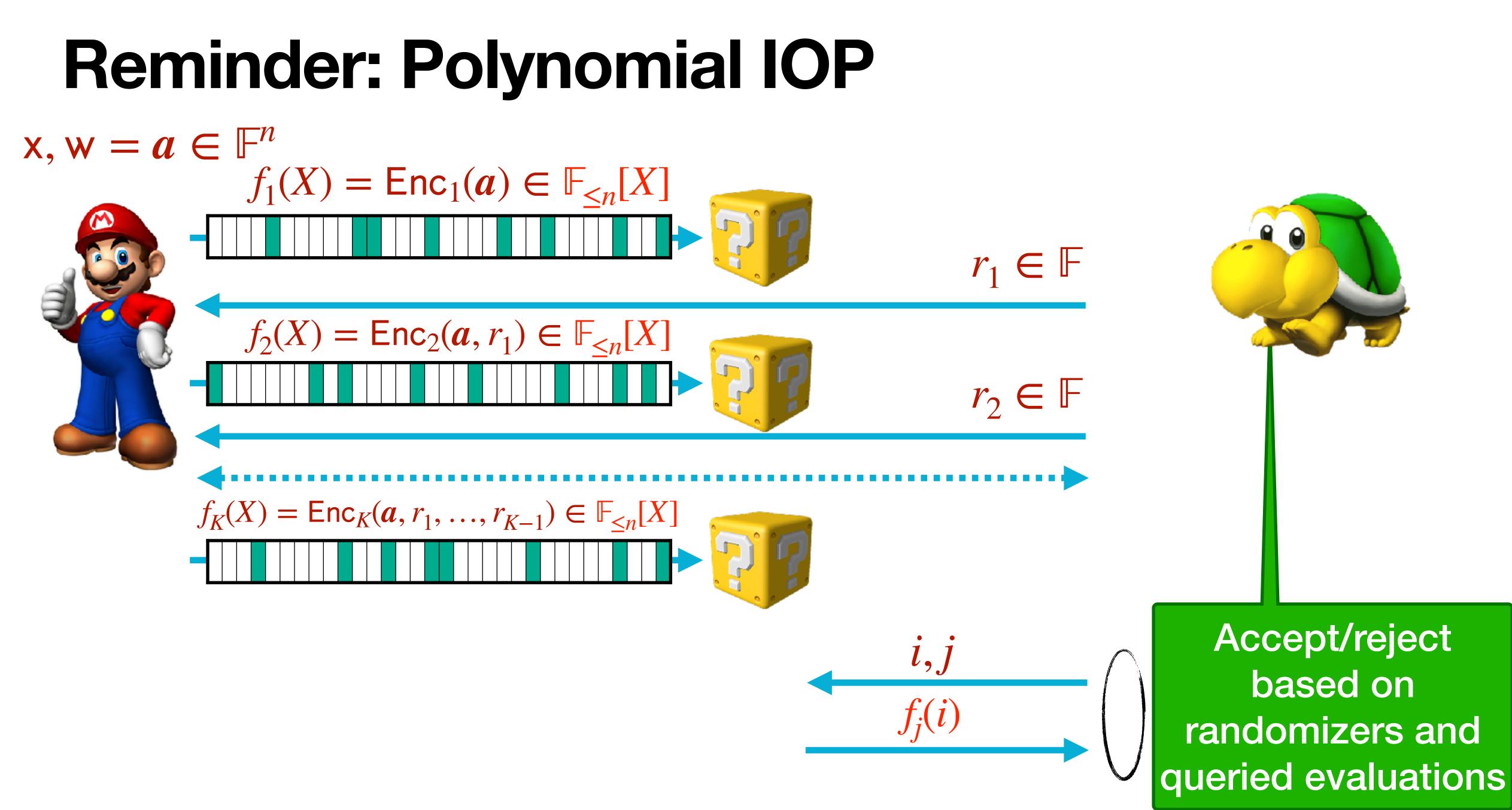
- **FFT** = multipoint evaluation: f(X) =
- Inverse FFT = interpolation: $(f(\omega_0))$
 - $f(X) \leftarrow \sum_{i=0}^{n} f(\omega^{i}) \ell_{i}(X) // \ell_{i}(X)$ are Lagrange polynomials
- Fis "FFT-friendly": 2^{32} (FFT-1)

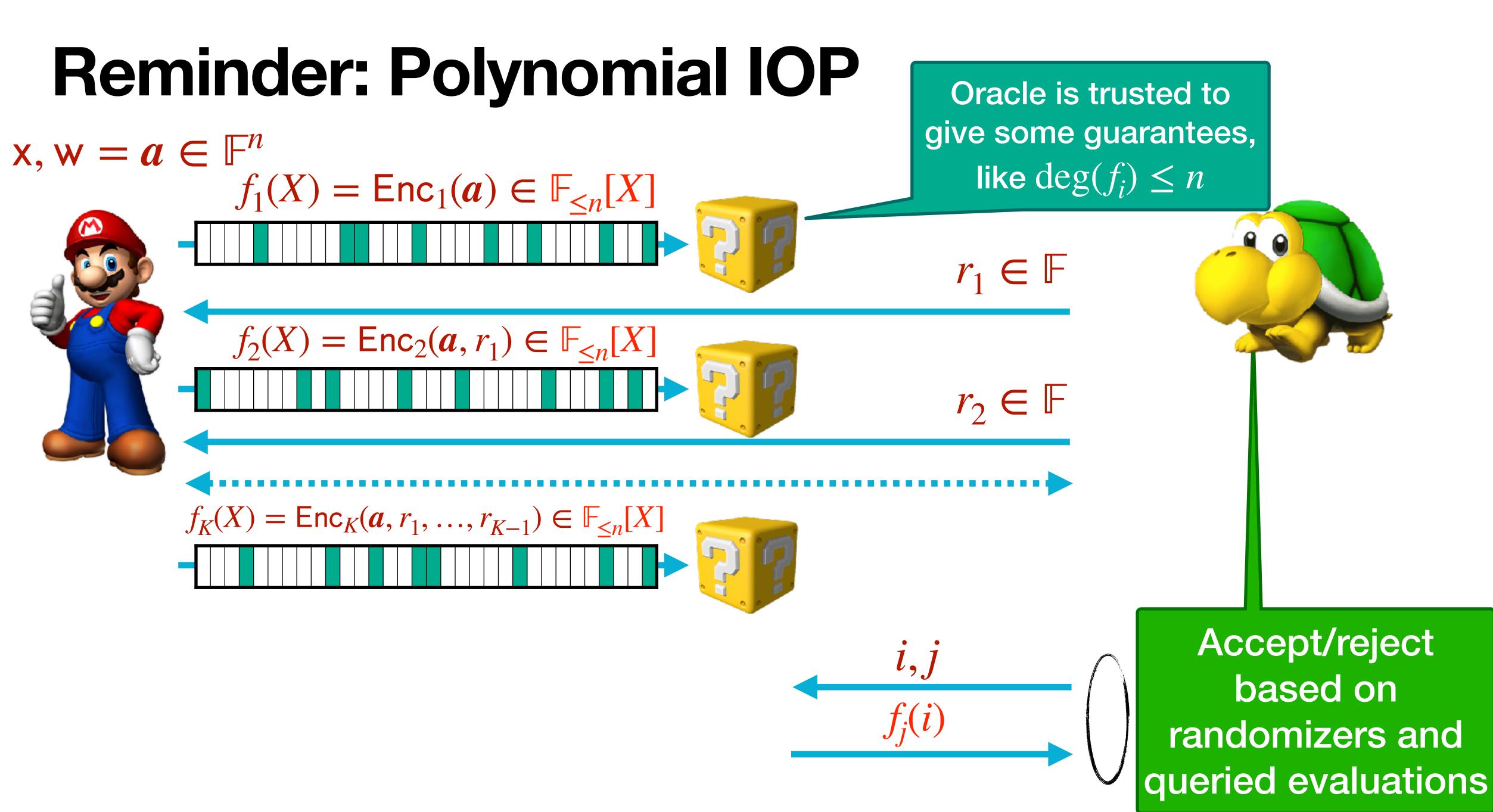
 - => almost all univariate PIOP based SNARKs use such fields

$$\sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega_0), \dots, f(\omega_{n-1}))$$

, ..., $f(\omega_{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$

• Exists $\mathbb{H} = \langle \omega \rangle = \{ \omega^i : i \in [0, n-1] \}$: mult. subgroup of \mathbb{F}^* of order n• FFT $f(X) = \sum_{i=0}^{n-1} f_i(X) \mapsto (f(\omega^0), \dots, f(\omega^{n-1}))$ in $O(n \log n)$ field ops • Interpolation $(f(\omega^0), ..., f(\omega^{n-1})) \mapsto f(X) = \sum_{i=0}^{n-1} f_i(X)$ in $O(n \log n)$ f.o.





Zero Check

• Witness: vector $a \in \mathbb{F}^n$

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...
 - Vector of wire values of a circuit

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...
 - Vector of wire values of a circuit
- "Public input": oracle to $a \in \mathbb{F}^n$

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...
 - Vector of wire values of a circuit
- "Public input": oracle to $a \in \mathbb{F}^n$
- Goal: The prover aims to convice the verifier $a = 0_n$ is zero vector

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...
 - Vector of wire values of a circuit
- "Public input": oracle to $a \in \mathbb{F}^n$
- Goal: The prover aims to convice the verifier $a = 0_n$ is zero vector

• Formally: prove $(x, w) \in \mathscr{R}_0$ for $\mathscr{R}_0 := \{(\blacksquare, a) : Enc(a) \in \blacksquare \land a = \mathbf{0}_n\}$

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...
 - Vector of wire values of a circuit
- "Public input": oracle to $a \in \mathbb{F}^n$
- Goal: The prover aims to convice the verifier $a = 0_n$ is zero vector
- - However, we have PIOP, so oracle contains a polynomial

• Formally: prove $(x, w) \in \mathscr{R}_0$ for $\mathscr{R}_0 := \{(\blacksquare, a) : Enc(a) \in \blacksquare \land a = \mathbf{0}_n\}$

First PIOP: Zero Check

- Witness: vector $a \in \mathbb{F}^n$
 - Any vector somewhere in the middle of calculations...
 - Vector of wire values of a circuit
- "Public input": oracle to $a \in \mathbb{F}^n$
- Goal: The prover aims to convice the verifier $a = 0_n$ is zero vector
- - However, we have PIOP, so oracle contains a polynomial
 - We will explain that next...

• Formally: prove $(x, w) \in \mathscr{R}_0$ for $\mathscr{R}_0 := \{(\blacksquare, a) : Enc(a) \in \blacksquare \land a = \mathbf{0}_n\}$

Zero Check is a very basic check

- Zero Check is a very basic check
 - Underlies essentially anything else

- Zero Check is a very basic check
 - Underlies essentially anything else
- Example: $a = b \Leftrightarrow a b = 0$

- Zero Check is a very basic check
 - Underlies essentially anything else
- Example: $a = b \Leftrightarrow a b = 0$
 - $a + b = c \Leftrightarrow a + b c = 0$

• Part of Intermediate Representatn: interpret a = 0 as polynomial constraint

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial

• $\forall i \in [1,n]$. $\hat{a}(\omega^{i-1}) = a_i$

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial
 - - $\forall i \in [1,n]$. $\hat{a}(\omega^{i-1}) = a_i$
 - Enc and its inverse ($Enc^{-1} = FFT$) are bijective, efficiently computable

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial
 - - $\forall i \in [1,n]$. $\hat{a}(\omega^{i-1}) = a_i$
- Enc and its inverse ($Enc^{-1} = FFT$) are bijective, efficiently computable • Zero check: a = 0 iff $\hat{a}(\omega^{i-1}) = 0$ for all $i \in [1,n]$

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial
 - - $\forall i \in [1,n]$. $\hat{a}(\omega^{i-1}) = a_i$
- Enc and its inverse ($Enc^{-1} = FFT$) are bijective, efficiently computable • Zero check: a = 0 iff $\hat{a}(\omega^{i-1}) = 0$ for all $i \in [1,n]$
 - If $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, the latter holds iff $\hat{a}(X) = 0$

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial
 - - $\forall i \in [1,n]$. $\hat{a}(\omega^{i-1}) = a_i$
 - Enc and its inverse ($Enc^{-1} = FFT$) are bijective, efficiently computable
- Zero check: a = 0 iff $\hat{a}(\omega^{i-1}) = 0$ for all $i \in [1,n]$
 - If $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, the latter holds iff $\hat{a}(X) = 0$
- Zero Check with oracles for $\mathbb{F}_{< n-1}[X]$ is really trivial

- Part of Intermediate Representatn: interpret a = 0 as polynomial constraint • Enc: map $a \in \mathbb{F}^n$ to $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, its interpolating polynomial
 - - $\forall i \in [1,n]$. $\hat{a}(\omega^{i-1}) = a_i$
 - Enc and its inverse ($Enc^{-1} = FFT$) are bijective, efficiently computable
- Zero check: a = 0 iff $\hat{a}(\omega^{i-1}) = 0$ for all $i \in [1,n]$
 - If $\hat{a}(X) \in \mathbb{F}_{< n-1}[X]$, the latter holds iff $\hat{a}(X) = 0$
- Zero Check with oracles for $\mathbb{F}_{< n-1}[X]$ is really trivial
 - Assuming the oracle guarantees the polynomial has "low degree" $\leq n 1$

• Recall: verifier needs to test $\hat{a}(X) = 0$

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?

• Short argument: Prover sends less information than the whole polynomial

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?

 Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?
- Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0 • We need to come up with some efficient test of the fact $\hat{a}(X) = 0$

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?
- Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0
- We need to come up with some efficient test of the fact $\hat{a}(X) = 0$ • Sending $\hat{a}(X)$ to verifier is not efficient

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?
- Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0 • We need to come up with some efficient test of the fact $\hat{a}(X) = 0$
- Sending $\hat{a}(X)$ to verifier is not efficient
- Hint 1: we can query the values of $\hat{a}(X)$ at any location

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?

 - Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0
- We need to come up with some efficient test of the fact $\hat{a}(X) = 0$
- Sending $\hat{a}(X)$ to verifier is not efficient
- **Hint 1:** we can query the values of $\hat{a}(X)$ at any location
- Hint 2: the verifier can toss random coins

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?

 - Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0
- We need to come up with some efficient test of the fact $\hat{a}(X) = 0$
- Sending $\hat{a}(X)$ to verifier is not efficient
- **Hint 1:** we can query the values of $\hat{a}(X)$ at any location
- Hint 2: the verifier can toss random coins
- Idea \Im : test that $\hat{a}(r) = 0$ for random r sampled by the verifier

- Recall: verifier needs to test $\hat{a}(X) = 0$
- How to do it efficiently?
- What do we mean by "efficiently"?

 - Short argument: Prover sends less information than the whole polynomial • Efficient verifier: V does less work than checking each coefficient is 0
- We need to come up with some efficient test of the fact $\hat{a}(X) = 0$
- Sending $\hat{a}(X)$ to verifier is not efficient
- **Hint 1:** we can query the values of $\hat{a}(X)$ at any location
- Hint 2: the verifier can toss random coins
- Idea \mathbb{Q} : test that $\hat{a}(r) = 0$ for random r sampled by the verifier

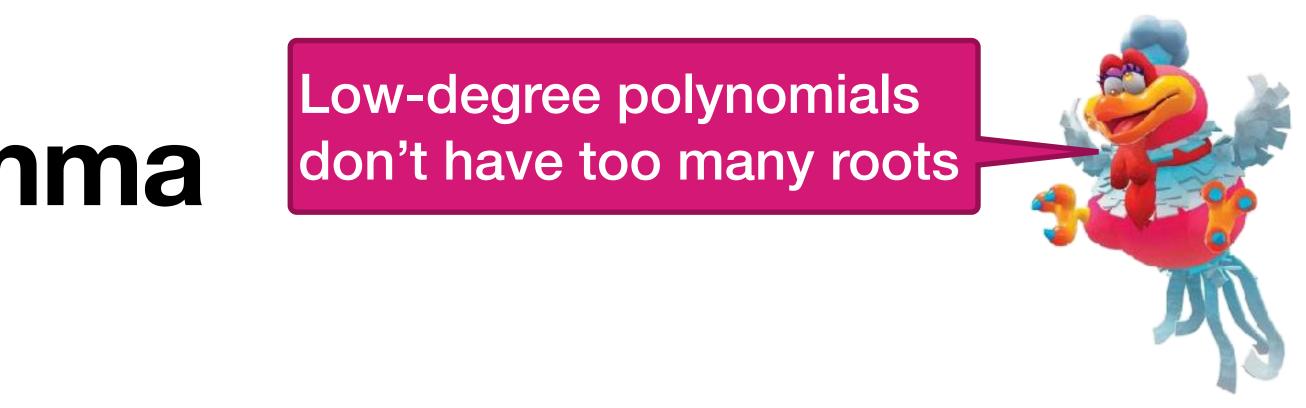
Why does this idea work?

Schwartz-Zippel Lemma

• Lemma. Let $f(X) \in \mathbb{F}_{<_n}[X]$ be a non-zero polynomial of degree $n \ge 0$. Let $r \leftarrow_{\$} \mathbb{F}$ be sampled uniformly at random. The probability that f(r) = 0 is at most $n \mid \mathbb{F}$

Schwartz-Zippel Lemma

- Lemma. Let $f(X) \in \mathbb{F}_{\leq n}[X]$ be a non-zero polynomial of degree $n \geq 0$. Let $r \leftarrow_{\$} \mathbb{F}$ be sampled uniformly at random. The probability that f(r) = 0 is at most $n/|\mathbb{F}|$
- **Proof:** Straightforward since f(X) has at most *n* roots



Schwartz-Zippel Lemma

- Lemma. Let $f(X) \in \mathbb{F}_{\leq n}[X]$ be a non-zero polynomial of degree $n \geq 0$. Let $r \leftarrow_{\$} \mathbb{F}$ be sampled uniformly at random. The probability that f(r) = 0 is at most $n/|\mathbb{F}|$
- **Proof:** Straightforward since f(X) has at most *n* roots
- Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of $\mathbb F$

Low-degree polynomials Schwartz-Zippel Lemma don't have too many roots

- Lemma. Let $f(X) \in \mathbb{F}_{< n}[X]$ be a non-zero polynomial of degree $n \ge 0$. Let $r \leftarrow_{\$} \mathbb{F}$ be sampled uniformly at random. The probability that f(r) = 0 is at most $n \mid \mathbb{F}$
- **Proof:** Straightforward since f(X) has at most *n* roots
- Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of F

• Lemma (Schwartz-Zippel). Let $f(X) \in \mathbb{F}[X_1, \dots, X_m]$ be a non-zero polynomial of total degree $n \ge 0$. Let S be a finite subset of F. Let $r_1, \ldots, r_m \leftarrow S$ be sampled uniformly at random. Then the probability that $f(r_1, \ldots, r_m) = 0$ is at most $n \mid S \mid$.

Low-degree polynomials Schwartz-Zippel Lemma don't have too many roots

- Lemma. Let $f(X) \in \mathbb{F}_{< n}[X]$ be a non-zero polynomial of degree $n \ge 0$. Let $r \leftarrow_{\$} \mathbb{F}$ be sampled uniformly at random. The probability that f(r) = 0 is at most $n \mid \mathbb{F}$
- **Proof:** Straightforward since f(X) has at most *n* roots
- Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of
- See https://en.wikipedia.org/wiki/Schwartz-Zippel lemma for a proof

• Lemma (Schwartz-Zippel). Let $f(X) \in \mathbb{F}[X_1, \dots, X_m]$ be a non-zero polynomial of total degree $n \ge 0$. Let S be a finite subset of F. Let $r_1, \ldots, r_m \leftarrow S$ be sampled uniformly at random. Then the probability that $f(r_1, \ldots, r_m) = 0$ is at most $n \mid S \mid$.

Low-degree polynomials Schwartz-Zippel Lemma don't have too many roots

- Lemma. Let $f(X) \in \mathbb{F}_{< n}[X]$ be a non-zero polynomial of degree $n \ge 0$. Let $r \leftarrow_{\$} \mathbb{F}$ be sampled uniformly at random. The probability that f(r) = 0 is at most $n \mid \mathbb{F}$
- **Proof:** Straightforward since f(X) has at most *n* roots
- Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of
- See https://en.wikipedia.org/wiki/Schwartz-Zippel lemma for a proof

 Schwartz-Zippel is hugely important in constructing efficient zk-SNARKs We mostly just use the first lemma (but still call it Schwartz-Zippel)

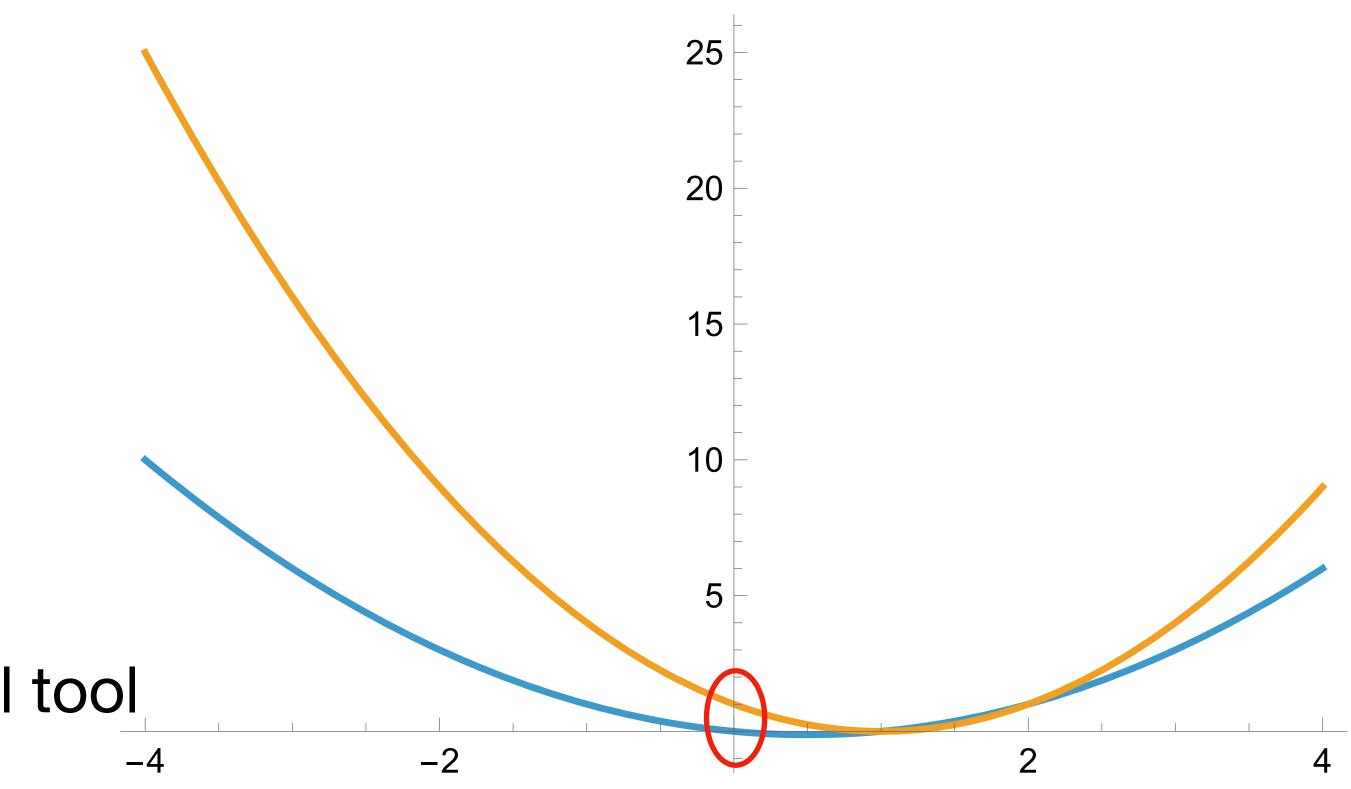
• Lemma (Schwartz-Zippel). Let $f(X) \in \mathbb{F}[X_1, \dots, X_m]$ be a non-zero polynomial of total degree $n \ge 0$. Let S be a finite subset of F. Let $r_1, \ldots, r_m \leftarrow S$ be sampled uniformly at random. Then the probability that $f(r_1, \ldots, r_m) = 0$ is at most $n \mid S \mid$.

• **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability

- **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability
- Schwartz-Zippel is extremely useful tool

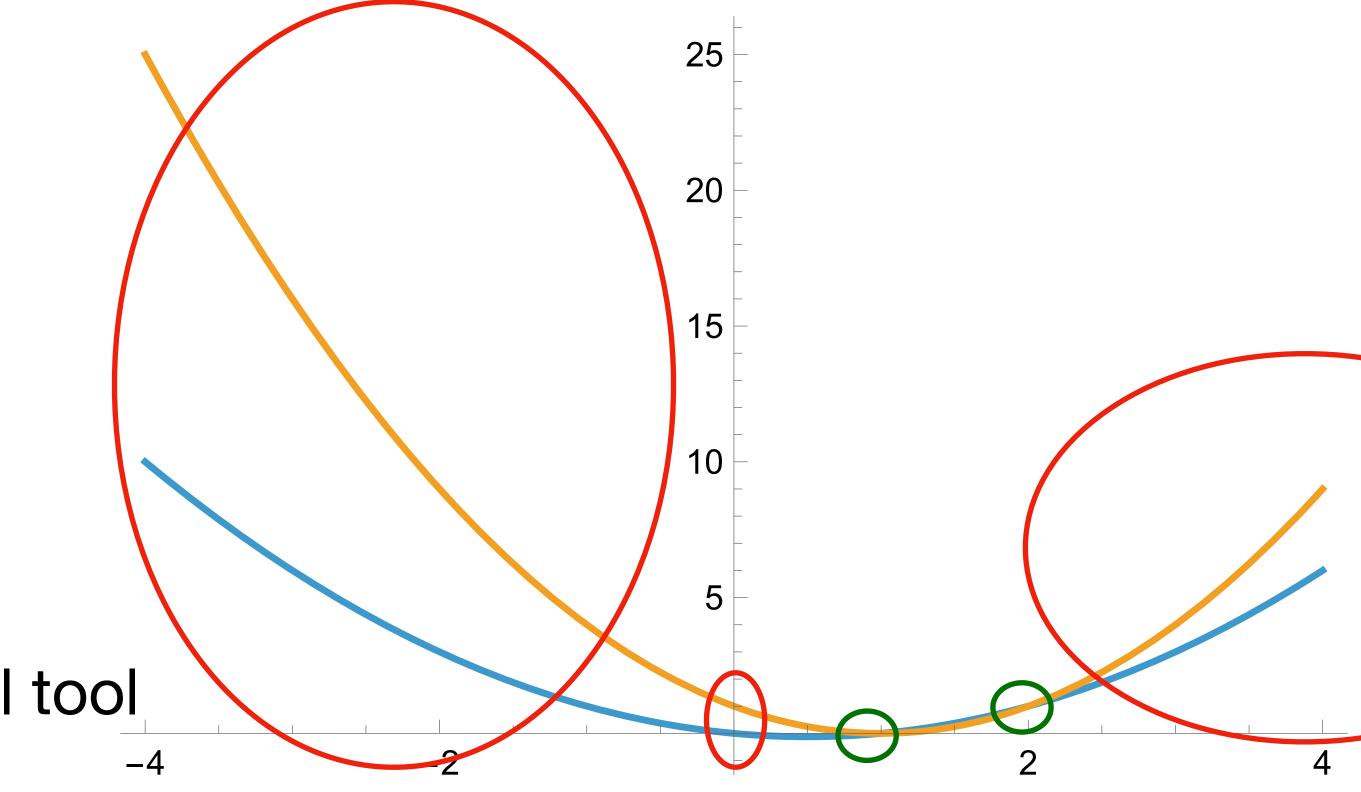
- **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability
- Schwartz-Zippel is extremely useful tool
- Intuition why so useful:

- **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability
- Schwartz-Zippel is extremely useful tool
- Intuition why so useful:
 - an **overwhelming** faction of points of **F**



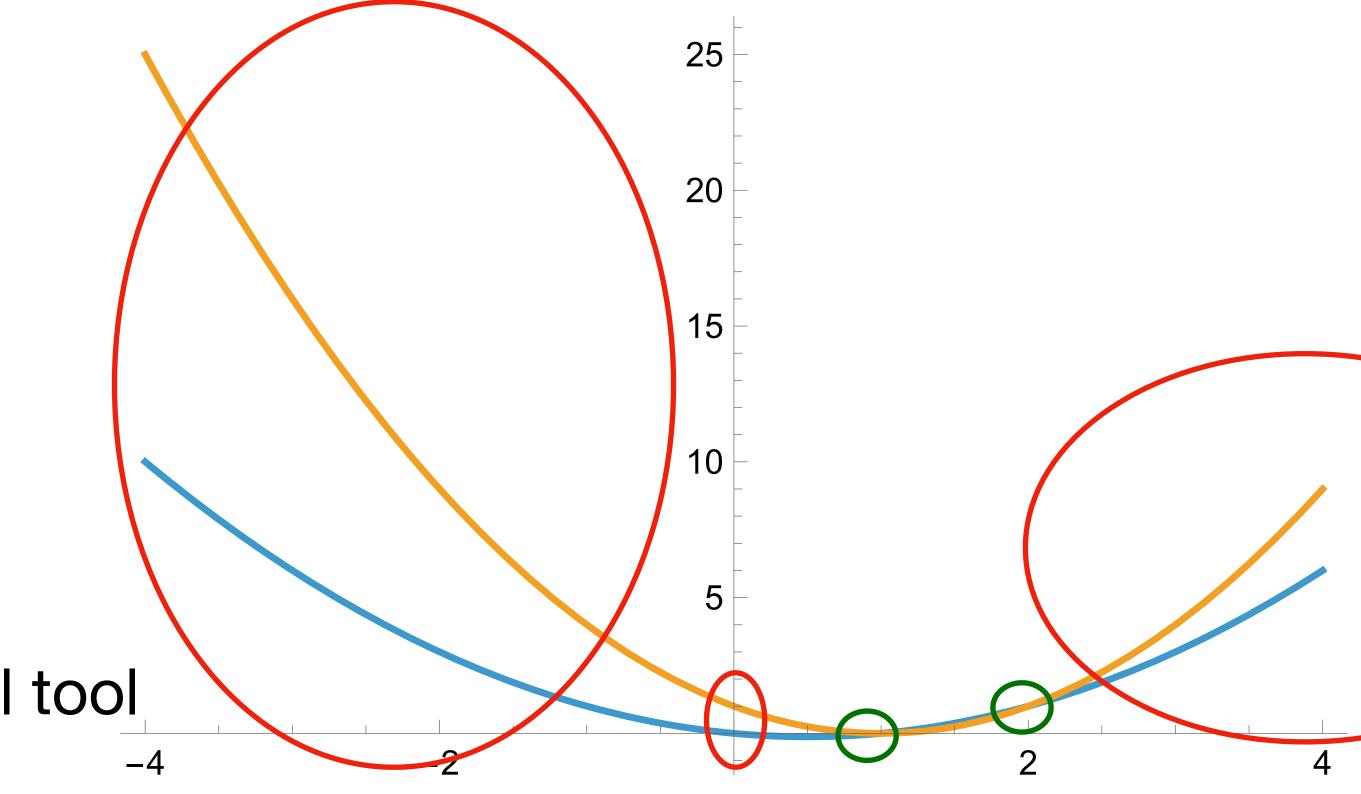
• If $f(X) \in \mathbb{F}_{<_n}[X]$ and $g(X) \in \mathbb{F}_{<_n}[X]$ differ at a single point, they differ on

- **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability
- Schwartz-Zippel is extremely useful tool
- Intuition why so useful:
 - an **overwhelming** faction of points of **F**



• If $f(X) \in \mathbb{F}_{<_n}[X]$ and $g(X) \in \mathbb{F}_{<_n}[X]$ differ at a single point, they differ on

- **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability
- Schwartz-Zippel is extremely useful tool
- Intuition why so useful:
 - an **overwhelming** faction of points of **F**
 - cheating (w.h.p.), querying a random point of the polynomial

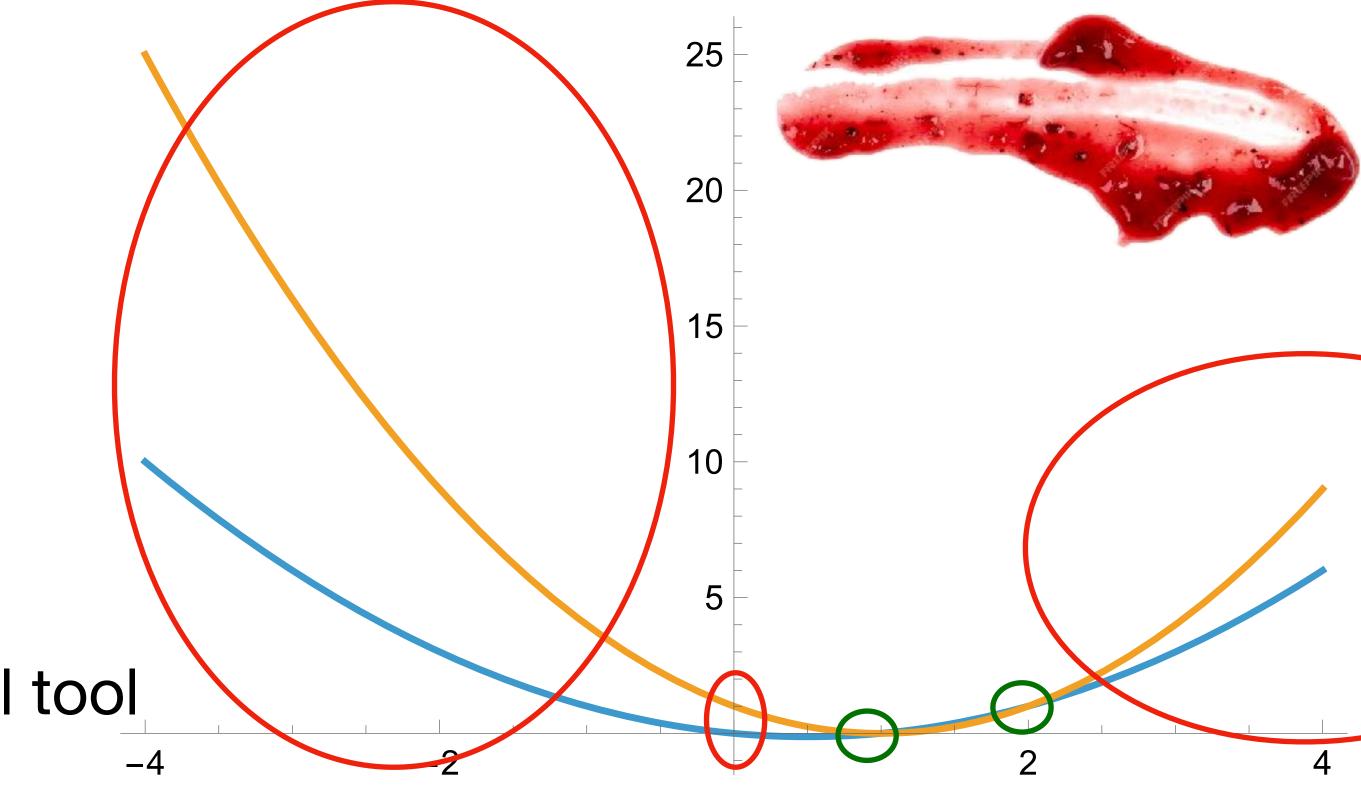


• If $f(X) \in \mathbb{F}_{<_n}[X]$ and $g(X) \in \mathbb{F}_{<_n}[X]$ differ at a single point, they differ on

• Thus, if prover cheats even at one point, the verifier can discover the

On Schwartz-Zippel

- **Degree mantra:** if $f(X) \neq 0$ then $f(r) \neq 0$ with "high" probability
- Schwartz-Zippel is extremely useful tool
- Intuition why so useful:
 - If $f(X) \in \mathbb{F}_{\leq n}[X]$ and $g(X) \in \mathbb{F}_{\leq n}[X]$ differ at a single point, they differ on an overwhelming faction of points of \mathbb{F}
 - Thus, if prover cheats even at one point, the verifier can discover the cheating (w.h.p.), querying a random point of the polynomial
 - "Smears" around the error akin to error-correcting codes

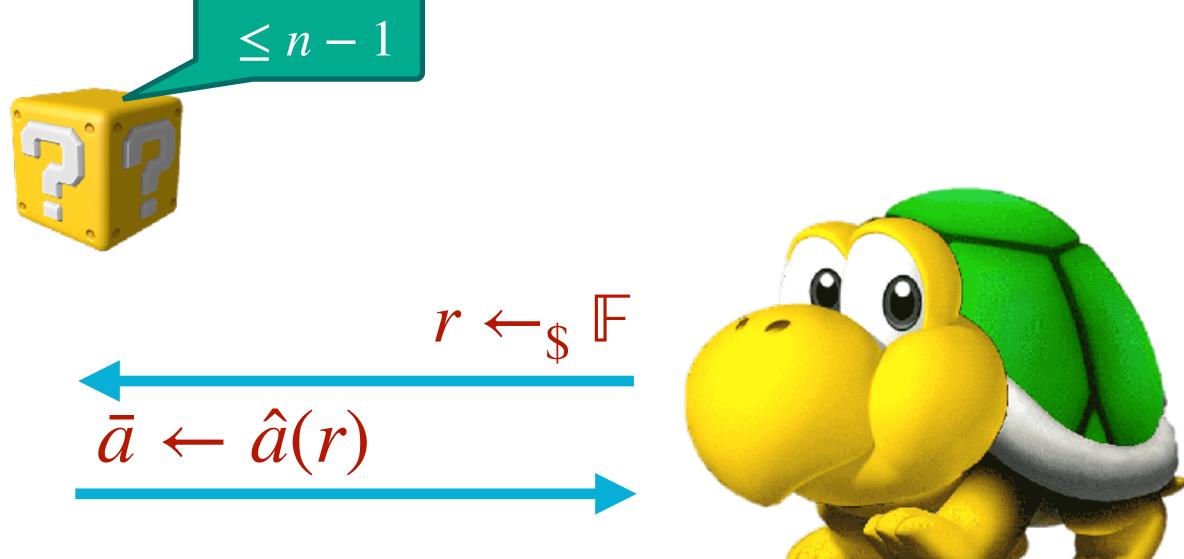


$\mathbf{x} = \emptyset, \mathbf{w} = \mathbf{a} \in \mathbb{F}^n$

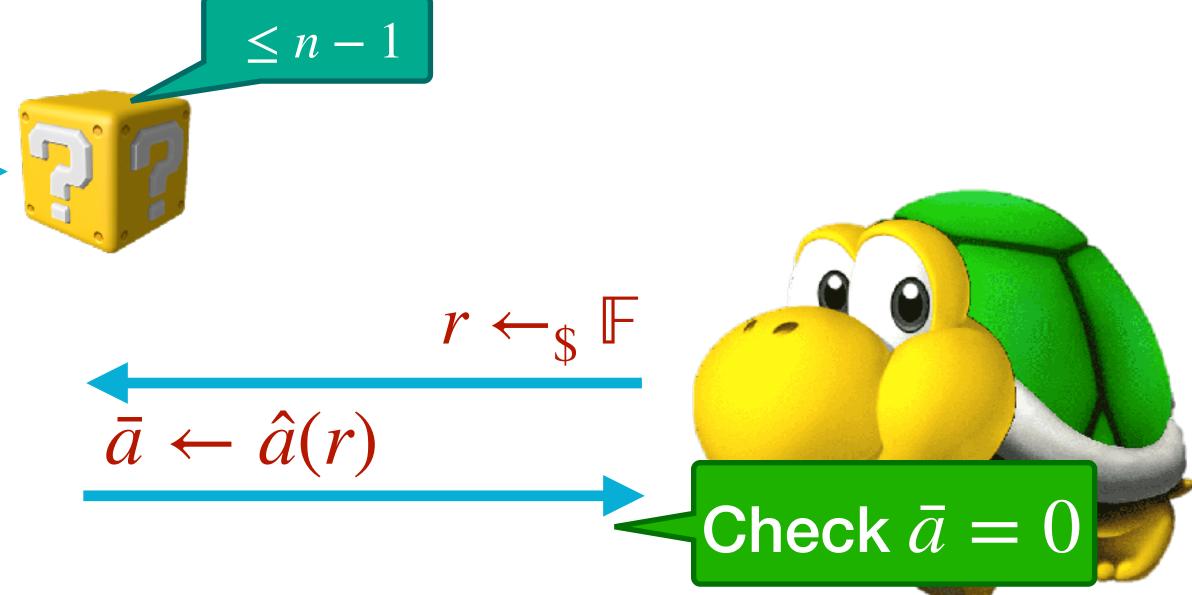
$\mathbf{x} = \emptyset, \mathbf{w} = \mathbf{a} \in \mathbb{F}^n$ $\hat{a}(X) \leftarrow \mathbf{IFFT}(\mathbf{0}) = \mathbf{0}$ $\hat{a}(X)$

$\leq n-1$

$\mathbf{x} = \emptyset, \mathbf{w} = \mathbf{a} \in \mathbb{F}^n$ $\hat{a}(X) \leftarrow \mathsf{IFFT}(\mathbf{0}) = \mathbf{0}$ $\hat{a}(X)$

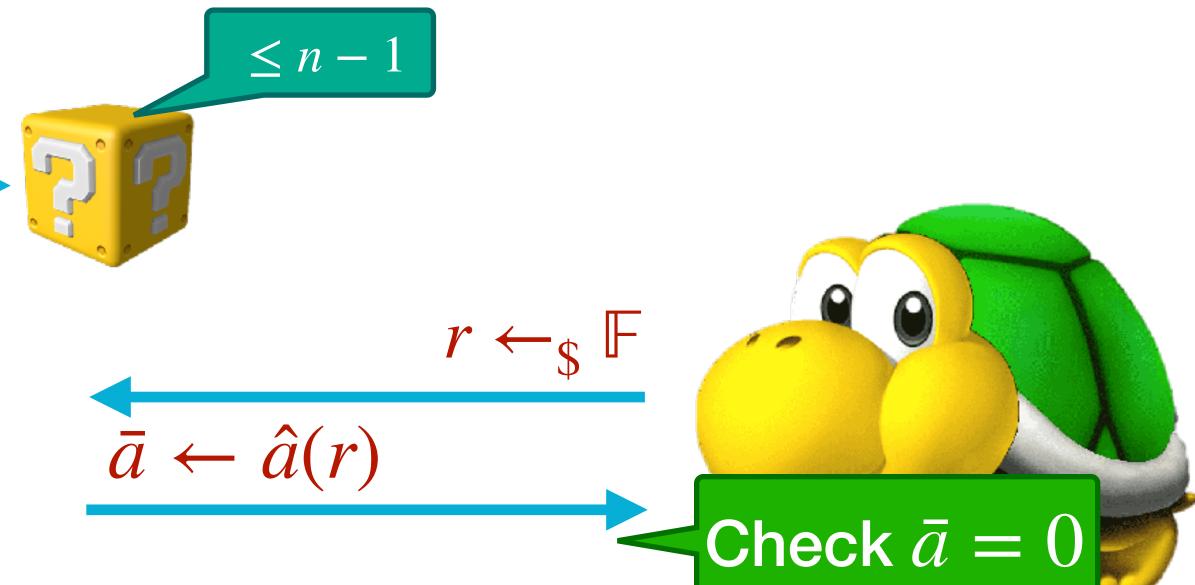


$\mathbf{x} = \emptyset, \mathbf{w} = \mathbf{a} \in \mathbb{F}^n$ $\hat{a}(X) \leftarrow \mathbf{IFFT}(\mathbf{0}) = \mathbf{0}$ $\hat{a}(X)$



$\mathbf{x} = \emptyset, \mathbf{w} = \mathbf{a} \in \mathbb{F}^n$ $\hat{a}(X) \leftarrow \mathbf{IFFT}(\mathbf{0}) = \mathbf{0}$ $\hat{a}(X)$

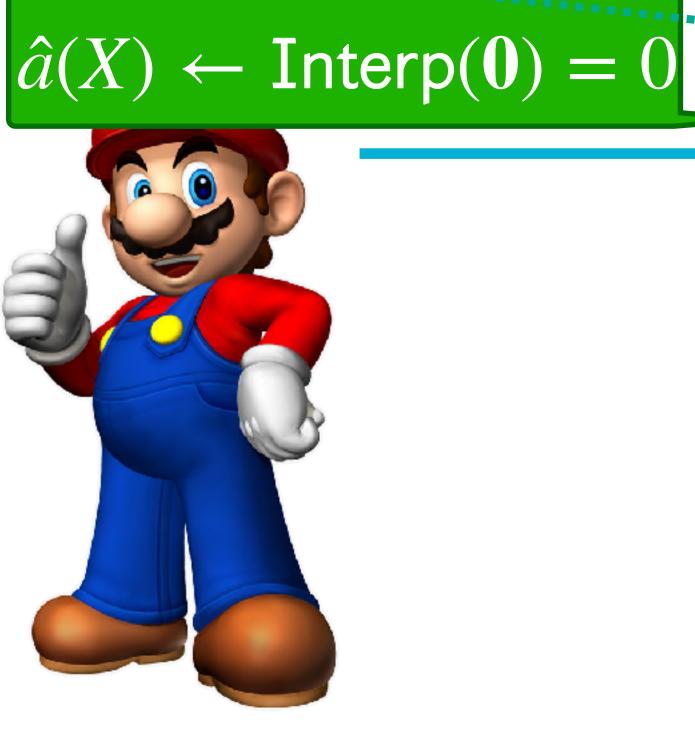
• Note: the goal of the protocol is to check a = 0as an input to the protocol // what exactly is = 0? • Solution: an oracle $[\hat{a}(X)]$ is a part of the input



This protocol makes little sense if nothing about *a* is given • $\mathscr{R} = \{(\mathbf{x}, \mathbf{w}) : \mathbf{x} = [[\hat{a}(X)]] \land \mathbf{w} = \mathsf{FFT}(\hat{a}(X)) \land \mathbf{w} = \mathbf{0}\}$

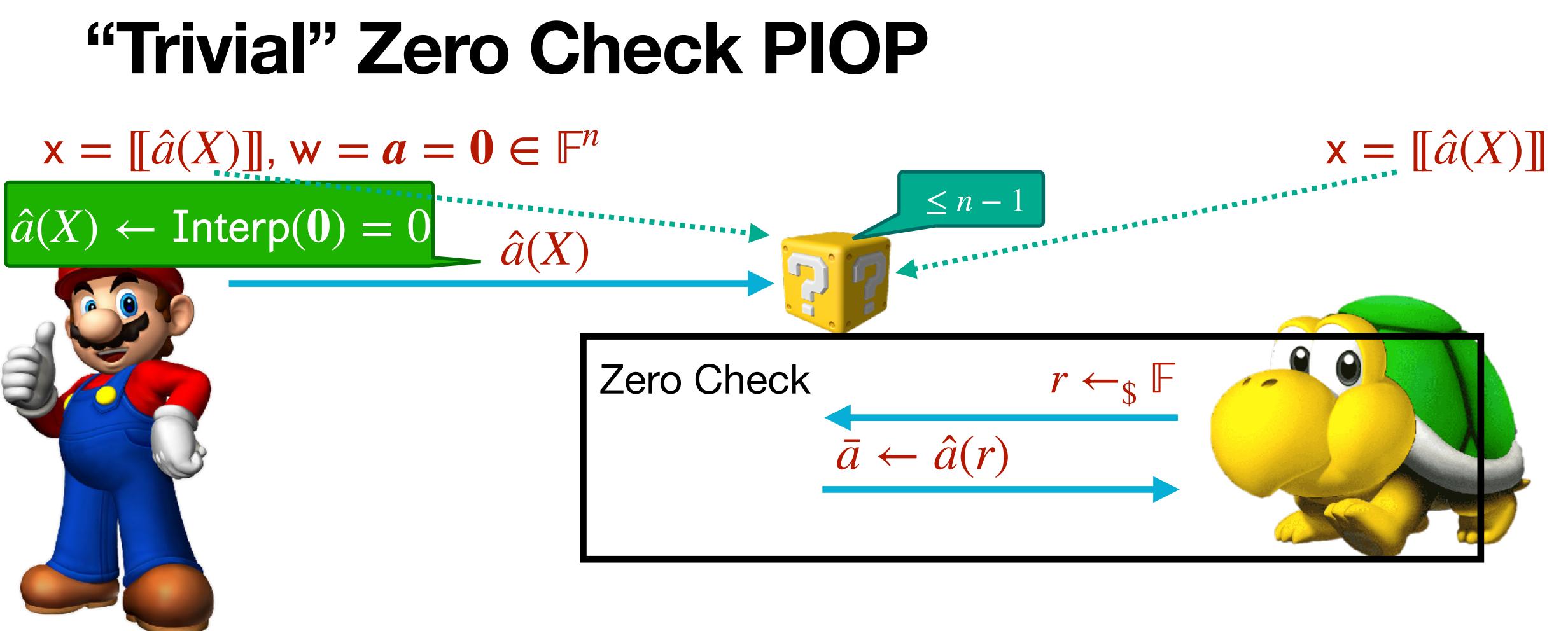
 $\hat{a}(X)$

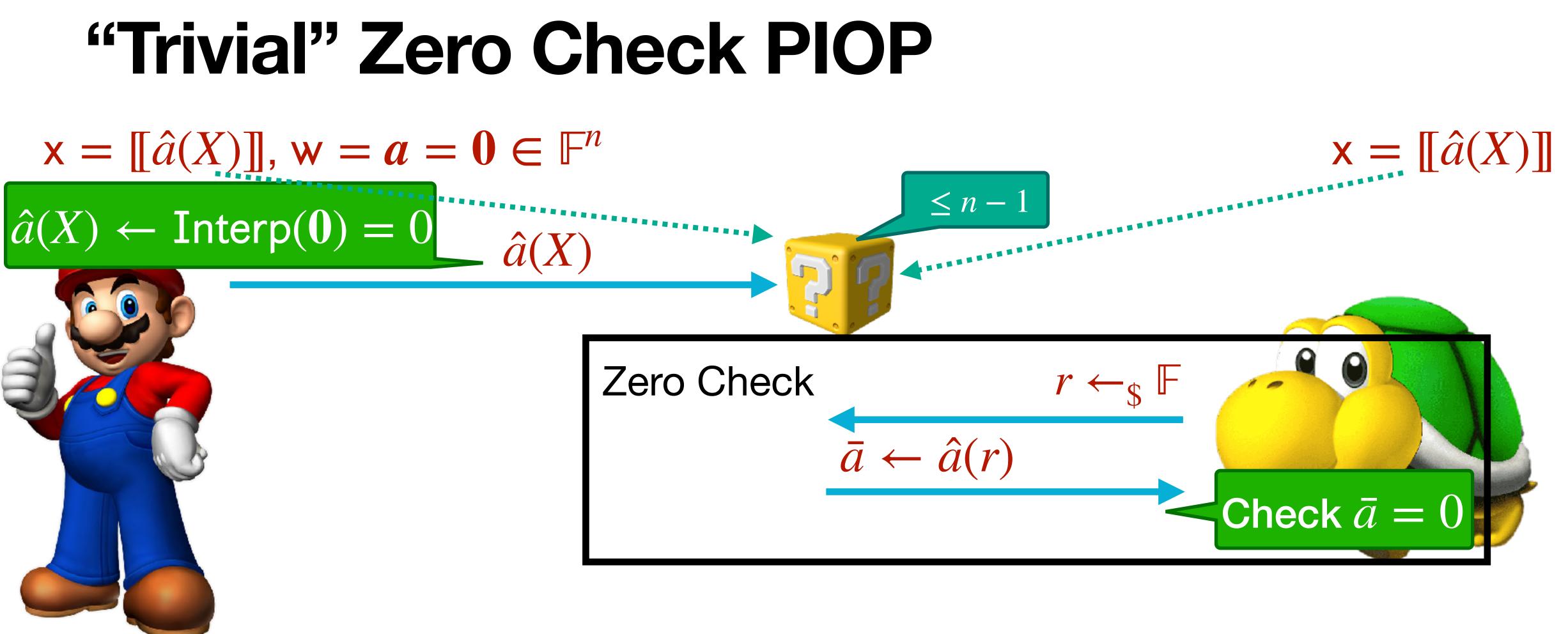
 $\mathbf{x} = \llbracket \hat{a}(X) \rrbracket, \mathbf{w} = \mathbf{a} = \mathbf{0} \in \mathbb{F}^n$

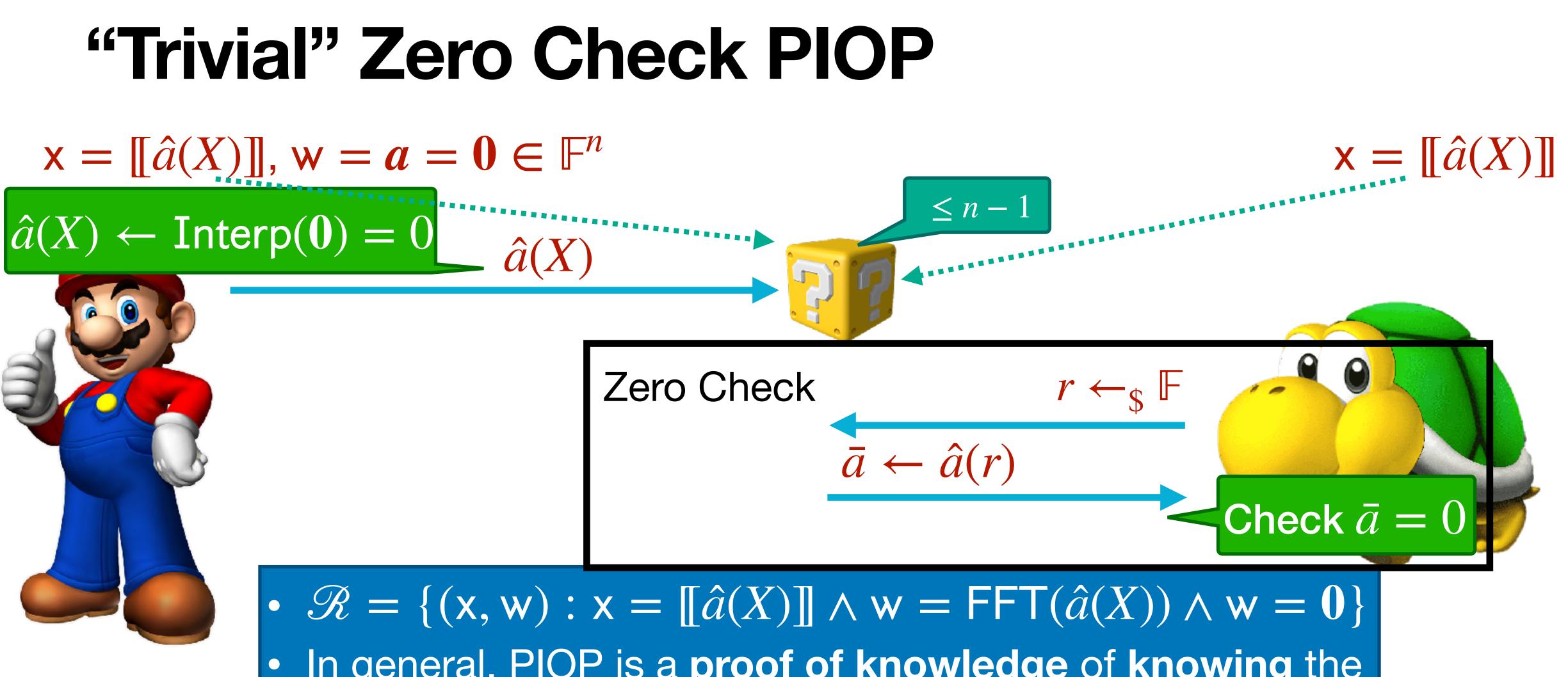


 $\leq n-1$

$\mathbf{x} = \llbracket \hat{a}(X) \rrbracket$







In general, PIOP is a **proof of knowledge** of **knowing** the contents of the oracles that satisfy some relation

the **commitments** that satisfy some relation

In zk-SNARKs, when replacing oracles with commitments, we get a proof of knowledge of knowing the contents of

Product Check

• Zero check is always used as a subroutine (not as a separate goal)

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - Boolean check: given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$

• Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - Boolean check: given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$

• Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - Boolean check: given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$
- Above described zero check works with degree- $\leq (n 1)$ polynomials

• Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$
- Above described zero check works with degree- $\leq (n-1)$ polynomials

• Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$

• Intermediate polyn's in other checks can have higher degree than $|\mathbf{H}| = n$

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$
- Above described zero check works with degree- $\leq (n 1)$ polynomials

• Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$ • Intermediate polyn's in other checks can have higher degree than $|\mathbf{H}| = n$ • Product check has virtual oracle $\hat{a}(X)\hat{b}(X) - \hat{c}(X)$ of degree $\leq 2n - 1$

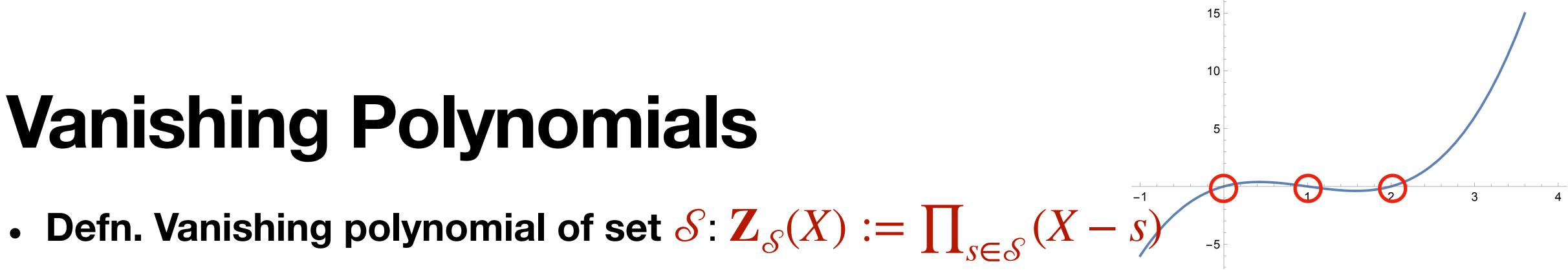
- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$
- Above described zero check works with degree- $\leq (n-1)$ polynomials
- - Does not fit into *n*-degree polynomial oracle!

• Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$ • Intermediate polyn's in other checks can have higher degree than $|\mathbf{H}| = n$ • Product check has virtual oracle $\hat{a}(X)\hat{b}(X) - \hat{c}(X)$ of degree $\leq 2n - 1$

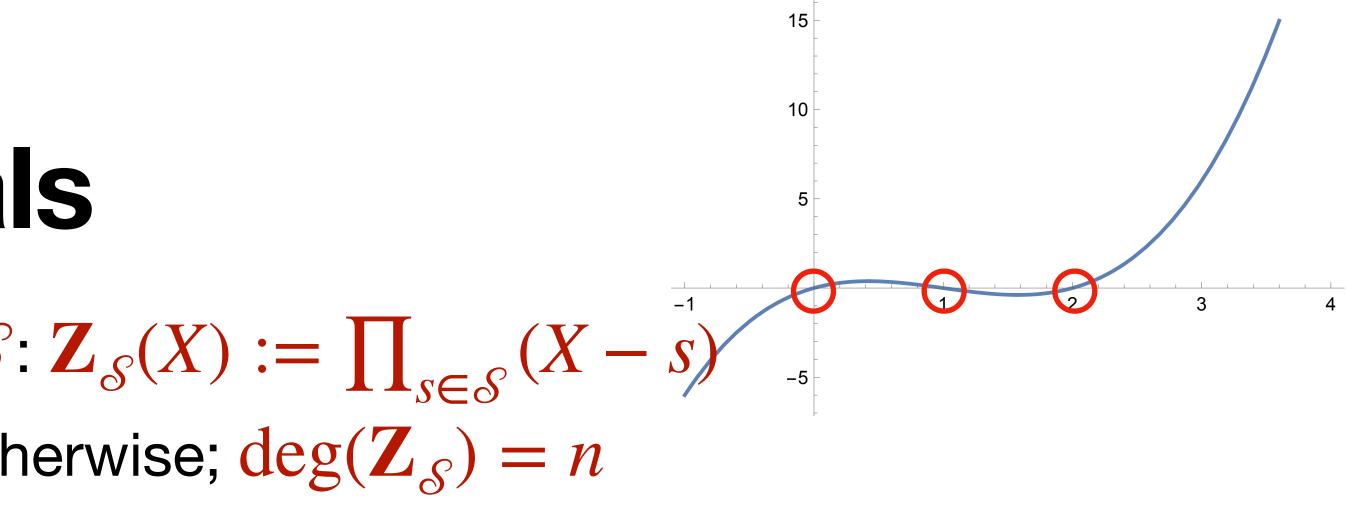
- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$ • Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$
- Product check has virtual oracle $\hat{a}(X)\hat{b}(X) \hat{c}(X)$ of degree $\leq 2n 1$
- Above described zero check works with degree- $\leq (n-1)$ polynomials • Intermediate polyn's in other checks can have higher degree than $|\mathbf{H}| = n$
- Does not fit into *n*-degree polynomial oracle!
- Need to modify zero check to work with high-degree "virtual" oracles

- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$ • Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$
- Product check has virtual oracle $\hat{a}(X)\hat{b}(X) \hat{c}(X)$ of degree $\leq 2n 1$
- Above described zero check works with degree- $\leq (n-1)$ polynomials • Intermediate polyn's in other checks can have higher degree than $|\mathbf{H}| = n$
- - Does not fit into *n*-degree polynomial oracle!
- Need to modify zero check to work with high-degree "virtual" oracles
- We will give a concrete example for "product check"

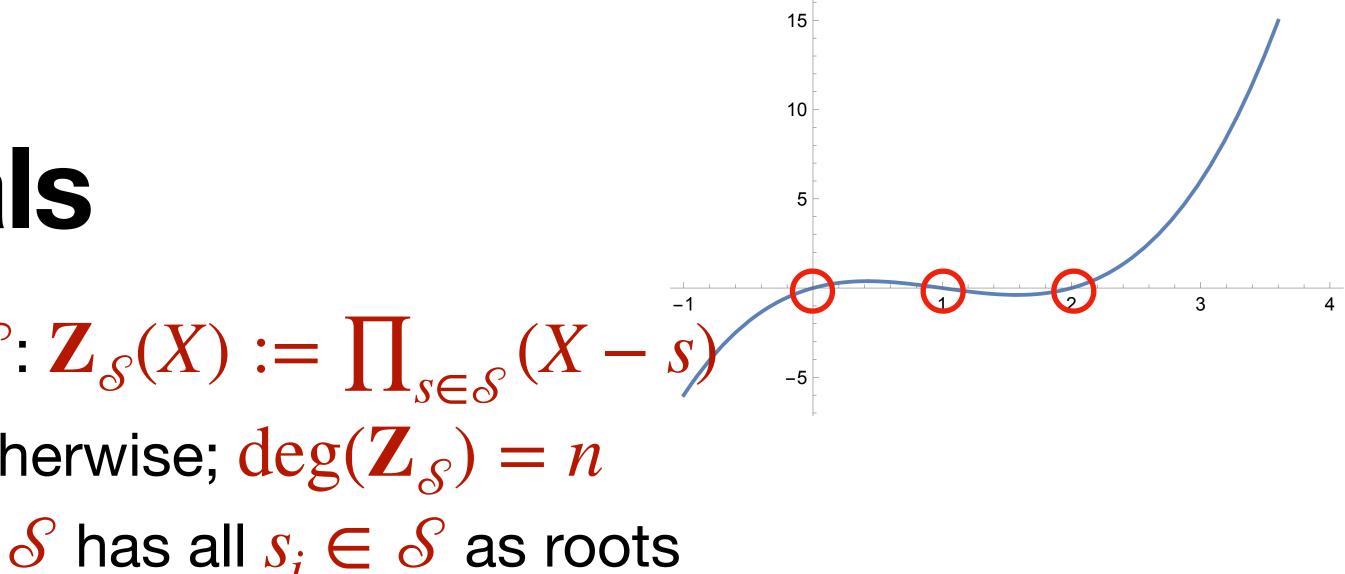
- Zero check is always used as a subroutine (not as a separate goal)
- Simple example use cases:
 - **Boolean check:** given input vector \mathbf{a} , check $\forall i \cdot a_i(a_i 1) = 0$ • Addition check: given input vectors a, b, c, check $\forall i \cdot a_i + b_i - c_i = 0$ • **Product check:** given input vectors a, b, c, check $\forall i \cdot a_i b_i - c_i = 0$
- Product check has virtual oracle $\hat{a}(X)\hat{b}(X) \hat{c}(X)$ of degree $\leq 2n 1$
- Above described zero check works with degree- $\leq (n-1)$ polynomials • Intermediate polyn's in other checks can have higher degree than $|\mathbf{H}| = n$
- - Does not fit into *n*-degree polynomial oracle!
- Need to modify zero check to work with high-degree "virtual" oracles
- We will give a concrete example for "product check"
- In addition, adding ZK will increase the degree of "virtual" oracles



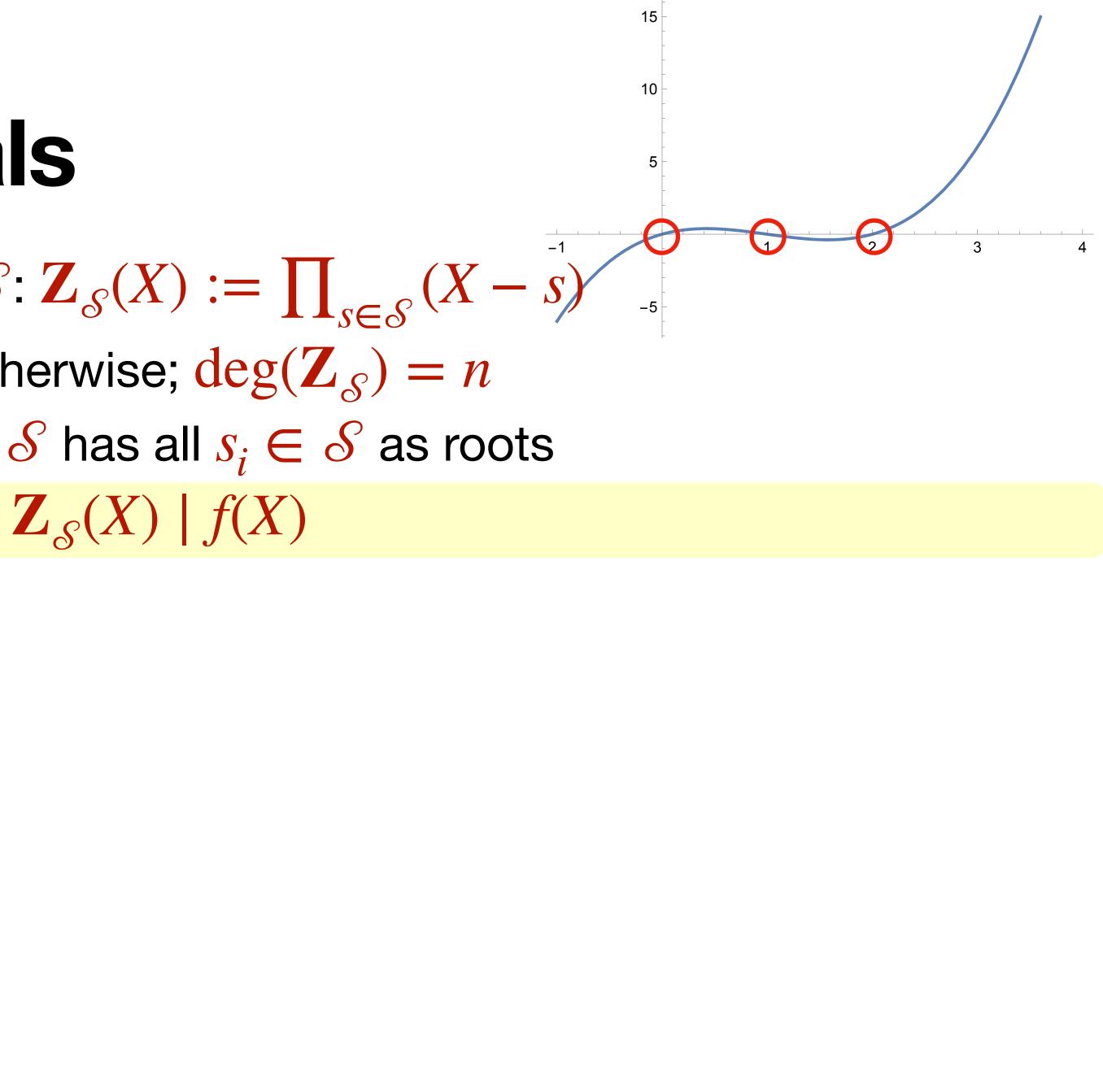
- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{\mathcal{S}}) = n$



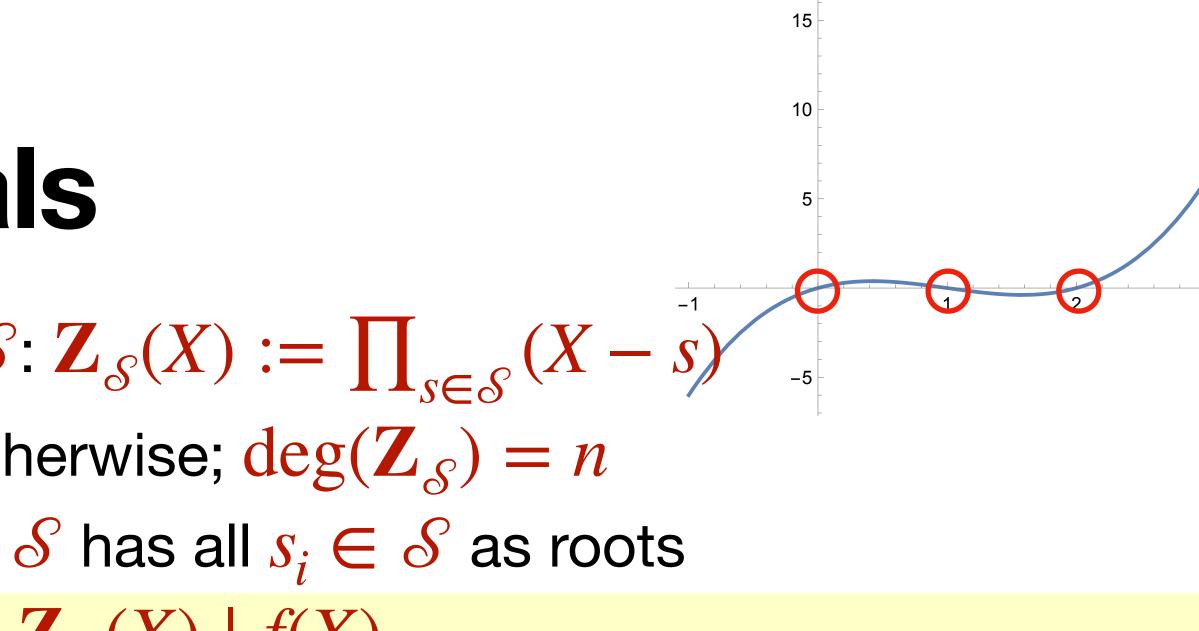
- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{\mathcal{S}}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots



- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{\mathcal{S}}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since (X s) | f(X) for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) | f(X)$

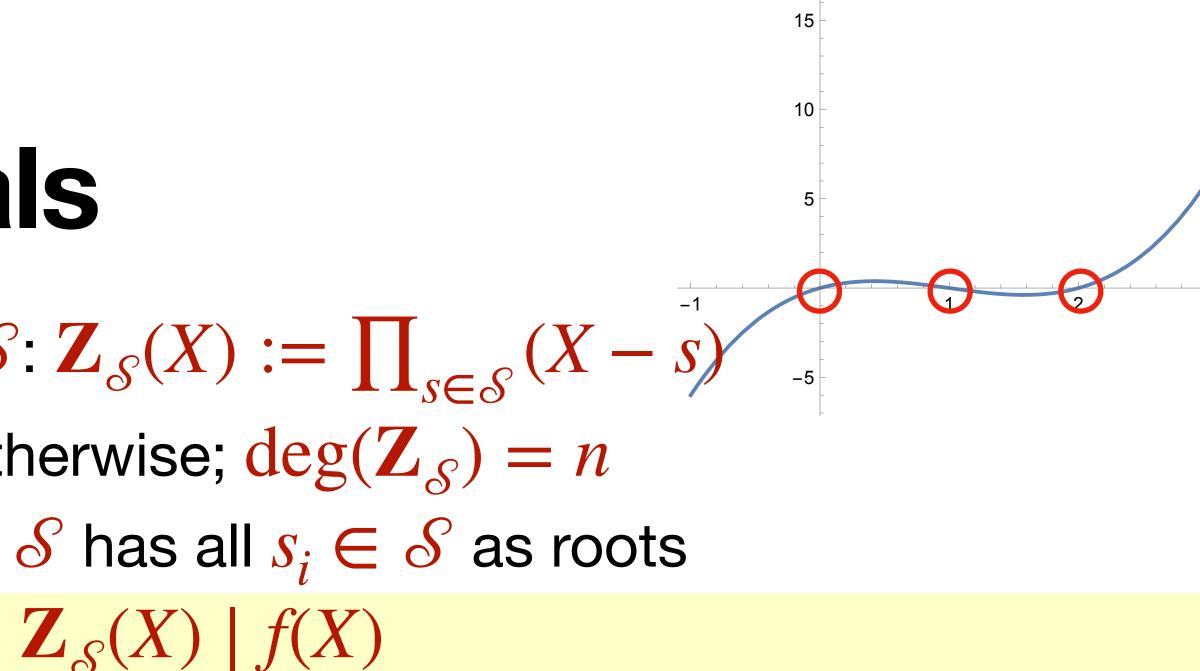


- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{S}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since $(X s) \mid f(X)$ for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) \mid f(X)$
 - f(X) = q(X)(X s) + r for a polynomial q(X) and remainder $r \in \mathbb{F}$.



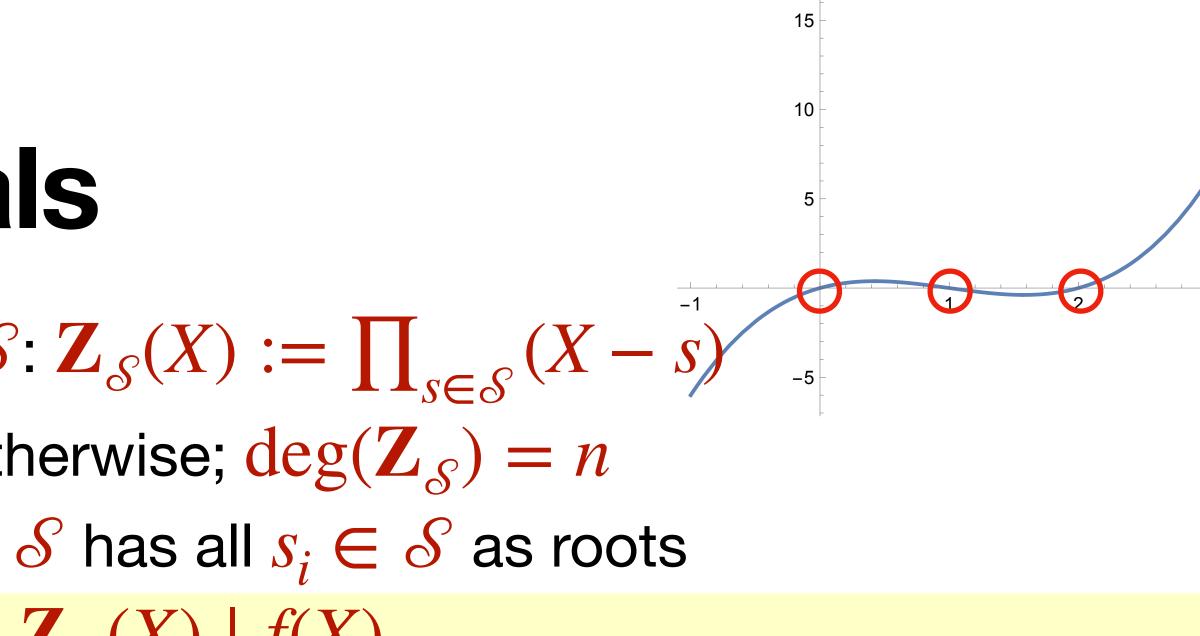
• Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write

- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{S}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since $(X s) \mid f(X)$ for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) \mid f(X)$
 - f(X) = q(X)(X s) + r for a polynomial q(X) and remainder $r \in \mathbb{F}$.
 - Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0



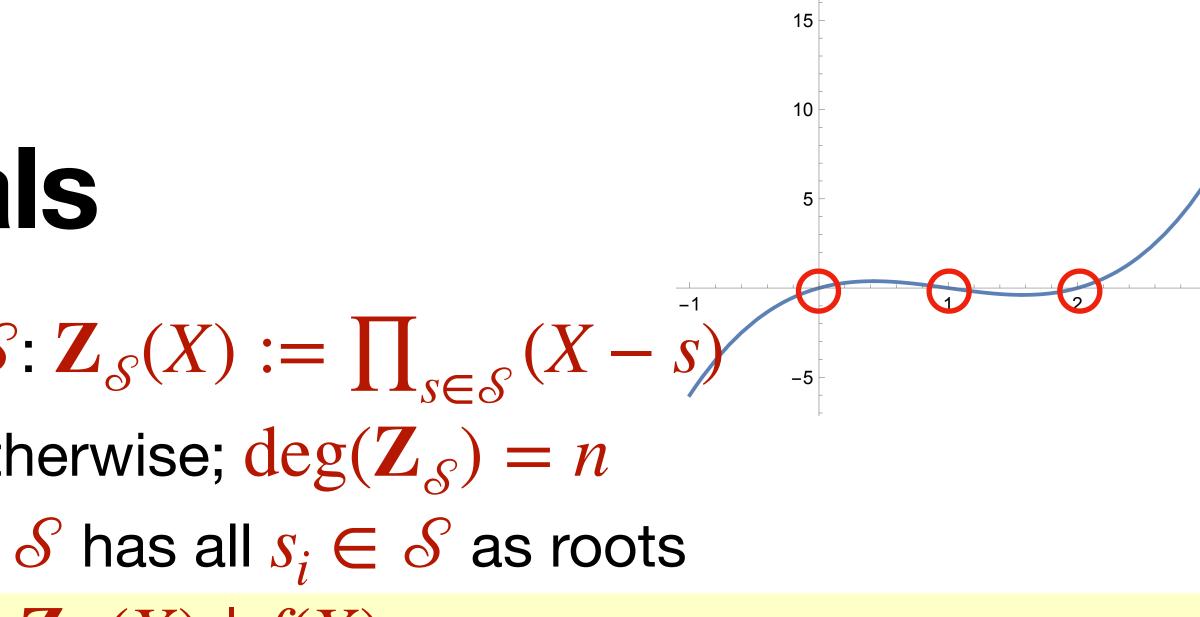
• Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write

- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{S}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since $(X s) \mid f(X)$ for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) \mid f(X)$
 - f(X) = q(X)(X s) + r for a polynomial q(X) and remainder $r \in \mathbb{F}$.
 - Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
 - Thus, f(X) = q(X)(X s) and (X s) | f(X)

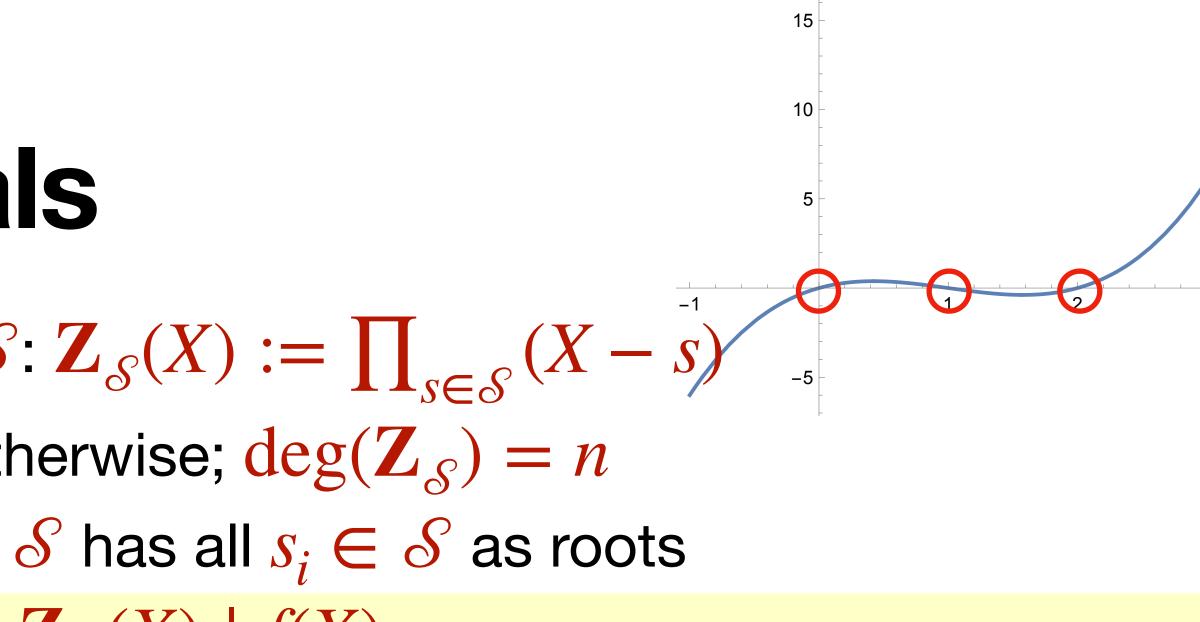


• Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write

- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{\mathcal{S}}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since (X s) | f(X) for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) | f(X)$
 - Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write f(X) = q(X)(X s) + r for a polynomial q(X) and remainder $r \in \mathbb{F}$.
 - Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
 - Thus, f(X) = q(X)(X s) and (X s) | f(X)
- Lemma. If $\deg(f) = N > n 1$ and f(X) vanishes on \mathcal{S} , then $f(X) = q(X)\mathbb{Z}_{\mathcal{S}}(X)$ for some $q(X) \in \mathbb{F}_{\leq N-n}[X]$

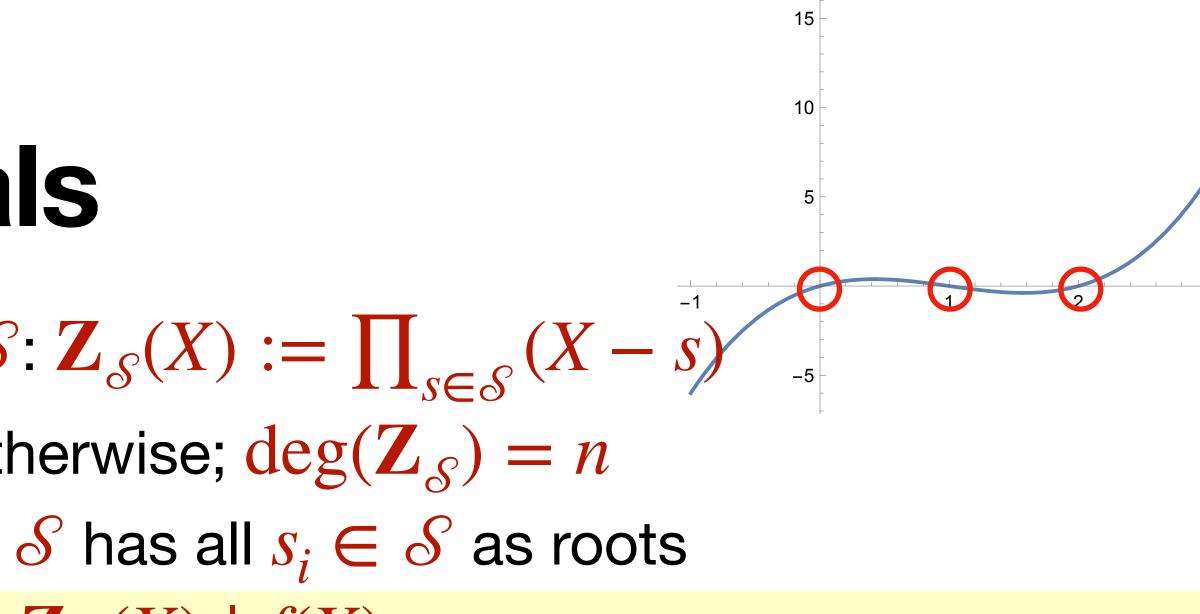


- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{S}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since $(X s) \mid f(X)$ for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) \mid f(X)$
 - Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write f(X) = q(X)(X - s) + r for a polynomial q(X) and remainder $r \in \mathbb{F}$.
 - Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
 - Thus, f(X) = q(X)(X s) and (X s) | f(X)
- Lemma. If deg(f) = N > n 1 and f(X) vanishes on \mathcal{S} , then $f(X) = q(X)Z_{\mathcal{S}}(X)$ for some $q(X) \in \mathbb{F}_{<N-n}[X]$



• \mathbb{Z}_{s} is unique, minimal-degree, monic, non-zero poly that vanishes exactly on δ

- Defn. Vanishing polynomial of set $\mathcal{S}: \mathbb{Z}_{\mathcal{S}}(X) := \prod_{s \in \mathcal{S}} (X s)$
 - $\mathbb{Z}_{\mathbb{H}}(s) = 0$ for $s \in S$, $\mathbb{Z}_{\mathbb{H}}(s) \neq 0$ otherwise; $\deg(\mathbb{Z}_{S}) = n$
- Any polynomial f(X) that vanishes on \mathcal{S} has all $s_i \in \mathcal{S}$ as roots
- Since $(X s) \mid f(X)$ for all $s \in \mathcal{S} => \mathbb{Z}_{\mathcal{S}}(X) \mid f(X)$
 - Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write f(X) = q(X)(X - s) + r for a polynomial q(X) and remainder $r \in \mathbb{F}$.
 - Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
 - Thus, f(X) = q(X)(X s) and (X s) | f(X)
- Lemma. If deg(f) = N > n 1 and f(X) vanishes on \mathcal{S} , then $f(X) = q(X)Z_{\mathcal{S}}(X)$ for some $q(X) \in \mathbb{F}_{<N-n}[X]$
- Important fact: $\mathbb{Z}_{\mathbb{H}}(X) = \prod_{i} (X \omega^{i-1}) = X^{n} 1$ since $(\omega^{i-1})^{n} = \omega^{n(i-1)} = 1$



• $\mathbb{Z}_{\mathcal{S}}$ is unique, minimal-degree, monic, non-zero poly that vanishes exactly on \mathcal{S}

Polynomial View of Product Check

• $\forall i \in [1,n]$. $a_i b_i = c_i$

Polynomial View of Product Check

• $\forall i \in [1,n] . a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$

Polynomial View of Product Check

• $\forall i \in [1,n] . a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$

Interpolation/polynomial evaluation: fast algorithms to get from witness to polynomial encoding and back



• $\forall i \in [1,n]$. $a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$ // $\hat{a}(X) := \sum_{i=1}^{n} a_i \ell_i(X) = \text{IFFT}(a) \in \mathbb{F}_{< n-1}[X], \text{ etc}$



• $\forall i \in [1,n]$. $a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$ $//\hat{a}(X) := \sum_{i=1}^{n} a_i \ell_i(X) = \text{IFFT}(a) \in \mathbb{F}_{\leq n-1}[X], \text{ etc}$ $\Leftrightarrow f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X) \in \mathbb{F}_{< 2n-2}[X] \text{ vanishes on } \mathbb{H}$

Interpolation/polynomial evaluation: fast algorithms to get from witness to polynomial encoding and back

 $\mathscr{R} = \{(\mathbf{x}, \mathbf{w}) : \mathbf{x} = \llbracket \hat{a}(X), \hat{b}(X), \hat{c}(X) \rrbracket \land \mathbf{w} = (\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathsf{FFT}(\hat{a}(X)), \mathsf{FFT}(\hat{b}(X)), \mathsf{FFT}(\hat{c}(X))) \land \forall i \in [1, n] a_i b_i = c_i\}$



• $\forall i \in [1,n]$. $a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$ $//\hat{a}(X) := \sum_{i=1}^{n} a_i \ell_i(X) = \text{IFFT}(a) \in \mathbb{F}_{\leq n-1}[X], \text{ etc}$ $\Leftrightarrow f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X) \in \mathbb{F}_{< 2n-2}[X] \text{ vanishes on } \mathbb{H}$ $\Leftrightarrow \mathbb{Z}_{\mathbb{H}}(X) \mid f(X)$

 $\mathscr{R} = \{(\mathbf{x}, \mathbf{w}) : \mathbf{x} = \llbracket \hat{a}(X), \hat{b}(X), \hat{c}(X) \rrbracket \land \mathbf{w} = (\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathsf{FFT}(\hat{a}(X)), \mathsf{FFT}(\hat{b}(X)), \mathsf{FFT}(\hat{c}(X))) \land \forall i \in [1, n] a_i b_i = c_i\}$



• $\forall i \in [1,n] . a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$ $// \hat{a}(X) := \sum_{i=1}^{n} a_i \ell_i(X) = \text{IFFT}(a) \in \mathbb{F}_{\leq n-1}[X], \text{ etc}$ $\Leftrightarrow f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X) \in \mathbb{F}_{<2n-2}[X] \text{ vanishes on } \mathbb{H}$ $\Leftrightarrow \mathbb{Z}_{\mathbb{H}}(X) \mid f(X)$ $\Leftrightarrow \exists q(X) \in \mathbb{F}_{< n-2}[X] . f(X) = q(X)Z_{\mathbb{H}}(X) (1)$

 $\mathscr{R} = \{(\mathbf{x}, \mathbf{w}) : \mathbf{x} = \llbracket \hat{a}(X), \hat{b}(X), \hat{c}(X) \rrbracket \land \mathbf{w} = (\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathsf{FFT}(\hat{a}(X)), \mathsf{FFT}(\hat{b}(X)), \mathsf{FFT}(\hat{c}(X))) \land \forall i \in [1, n] a_i b_i = c_i\}$



- $\forall i \in [1,n] . a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$ $// \hat{a}(X) := \sum_{i=1}^{n} a_i \ell_i(X) = \text{IFFT}(a) \in \mathbb{F}_{\leq n-1}[X], \text{ etc}$ $\Leftrightarrow f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X) \in \mathbb{F}_{<2n-2}[X] \text{ vanishes on } \mathbb{H}$ $\Leftrightarrow \mathbb{Z}_{\mathbb{H}}(X) \mid f(X)$ $\Leftrightarrow \exists q(X) \in \mathbb{F}_{< n-2}[X] . f(X) = q(X)Z_{\mathbb{H}}(X) (1)$ • Prover needs to prove that it "knows" $\hat{a}(X), \hat{b}(X), \hat{c}(X)$ and q(X) satisfying (1)

 $\mathscr{R} = \{(\mathbf{x}, \mathbf{w}) : \mathbf{x} = \llbracket \hat{a}(X), \hat{b}(X), \hat{c}(X) \rrbracket \land \mathbf{w} = (\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathsf{FFT}(\hat{a}(X)), \mathsf{FFT}(\hat{b}(X)), \mathsf{FFT}(\hat{c}(X))) \land \forall i \in [1, n] a_i b_i = c_i\}$

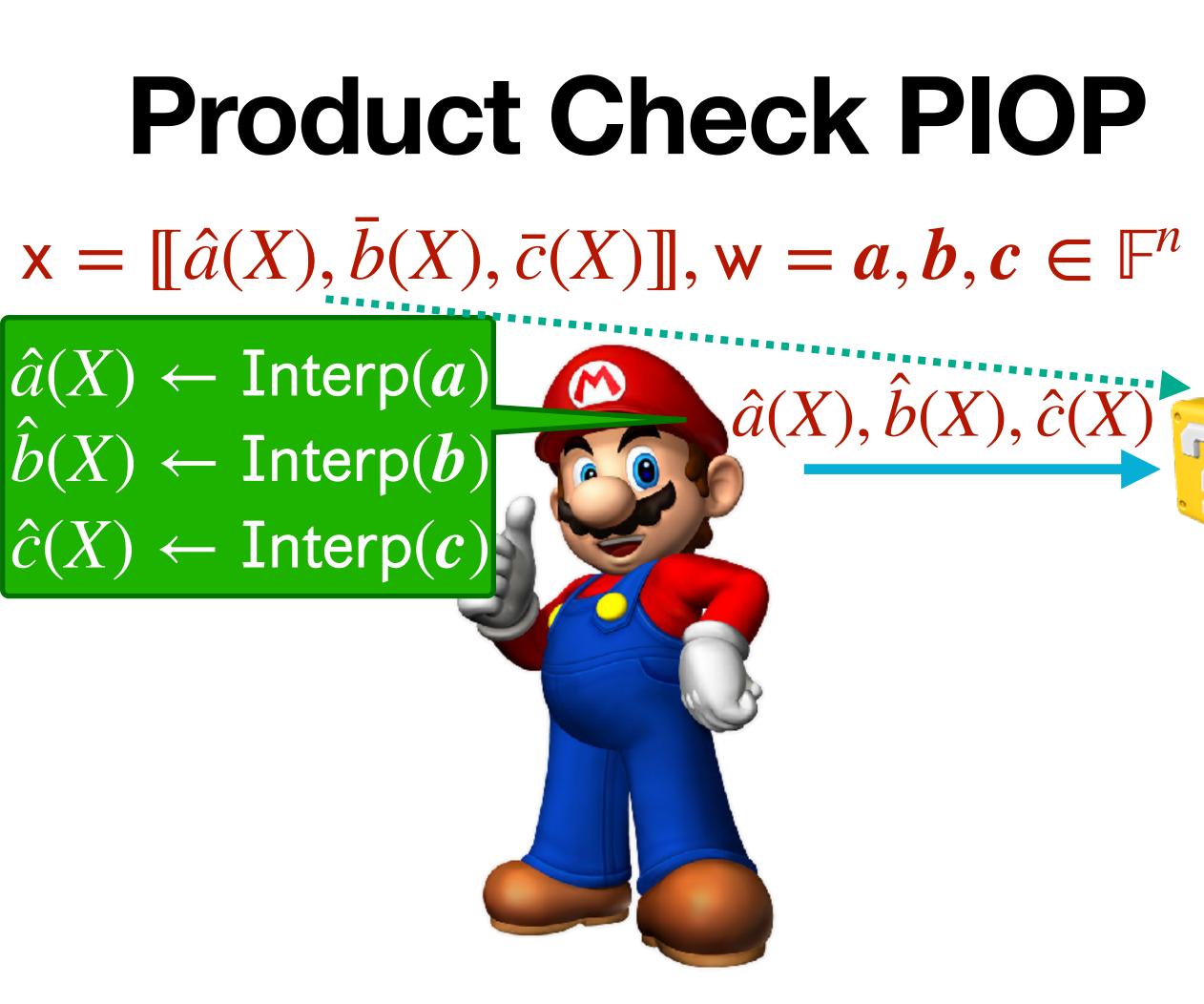


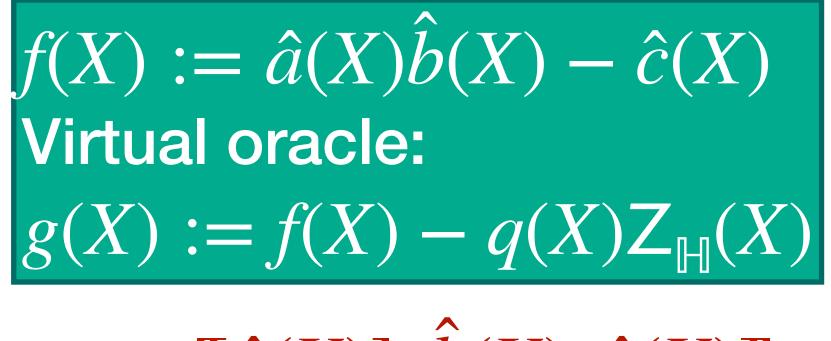
- $\forall i \in [1,n] . a_i b_i = c_i$ $\Leftrightarrow \forall i \in [1,n] . a_i b_i - c_i = 0$ $\Leftrightarrow \forall i \in [1,n] . \hat{a}(\omega^{i-1})\hat{b}(\omega^{i-1}) - \hat{c}(\omega^{i-1}) = 0$ $//\hat{a}(X) := \sum_{i=1}^{n} a_i \ell_i(X) = \text{IFFT}(a) \in \mathbb{F}_{\leq n-1}[X], \text{ etc}$ $\Leftrightarrow f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X) \in \mathbb{F}_{<2n-2}[X] \text{ vanishes on } \mathbb{H}$ $\Leftrightarrow \mathbb{Z}_{\mathbb{H}}(X) \mid f(X)$ $\Leftrightarrow \exists q(X) \in \mathbb{F}_{< n-2}[X] . f(X) = q(X)Z_{\mathbb{H}}(X) (1)$ • Prover needs to prove that it "knows" $\hat{a}(X), \hat{b}(X), \hat{c}(X)$ and q(X) satisfying (1)

 $\mathscr{R} = \{(\mathbf{x}, \mathbf{w}) : \mathbf{x} = \llbracket \hat{a}(X), \hat{b}(X), \hat{c}(X) \rrbracket \land \mathbf{w} = (\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathsf{FFT}(\hat{a}(X)), \mathsf{FFT}(\hat{b}(X)), \mathsf{FFT}(\hat{c}(X))) \land \forall i \in [1, n] a_i b_i = c_i\}$

Interpolation/polynomial evaluation: fast algorithms to get from witness to polynomial encoding and back

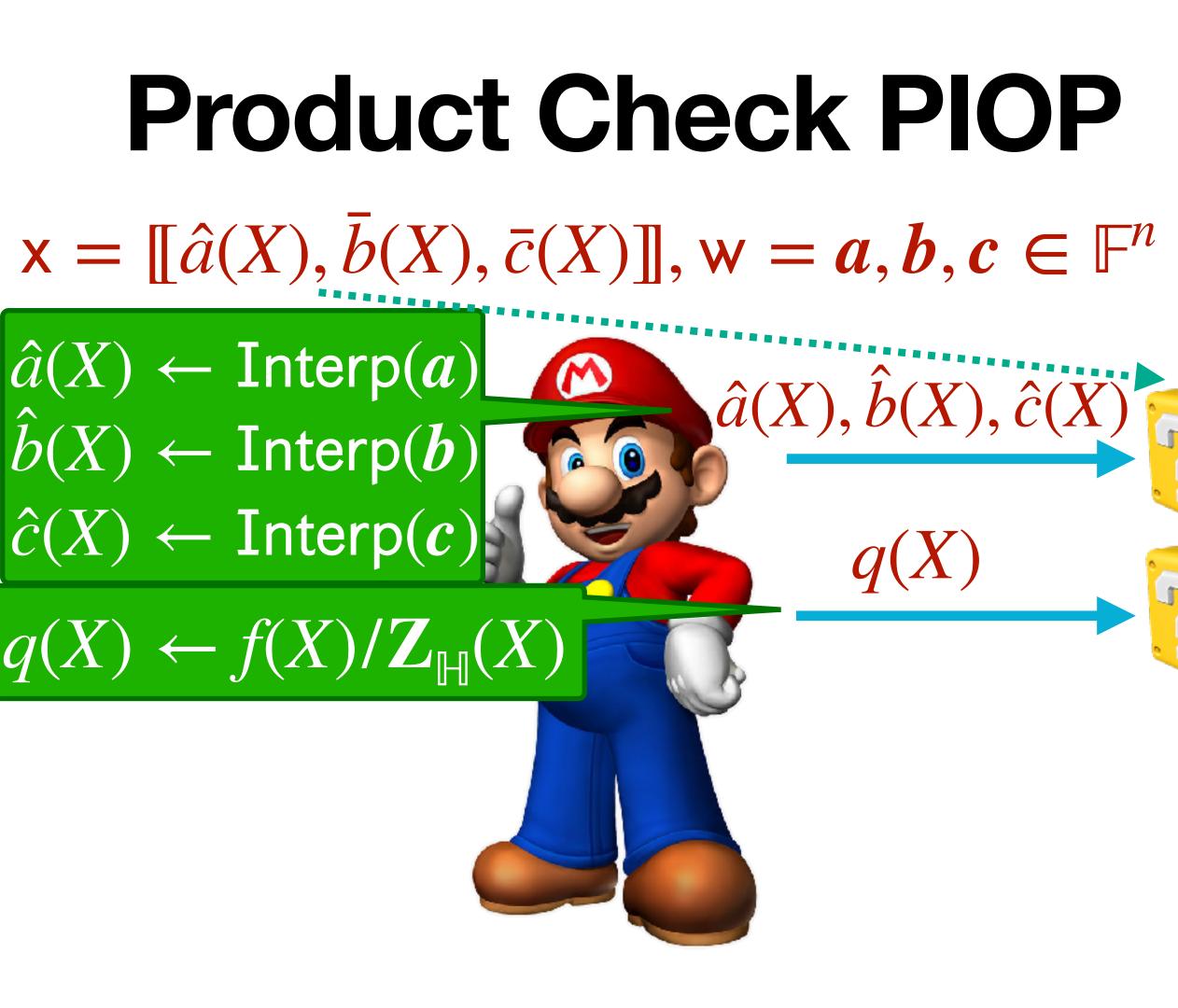
• NB! This is a standard way of using univariate polynomials — need to internalise it!

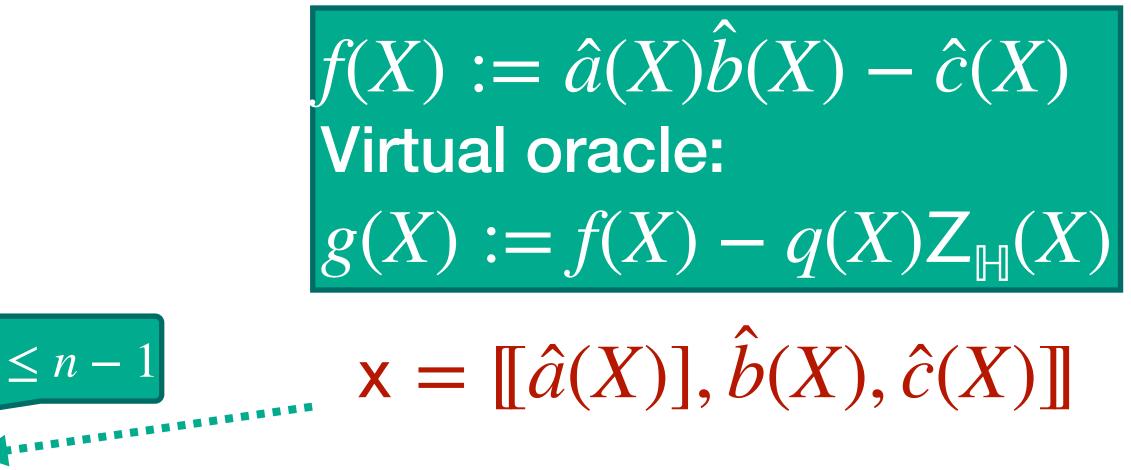


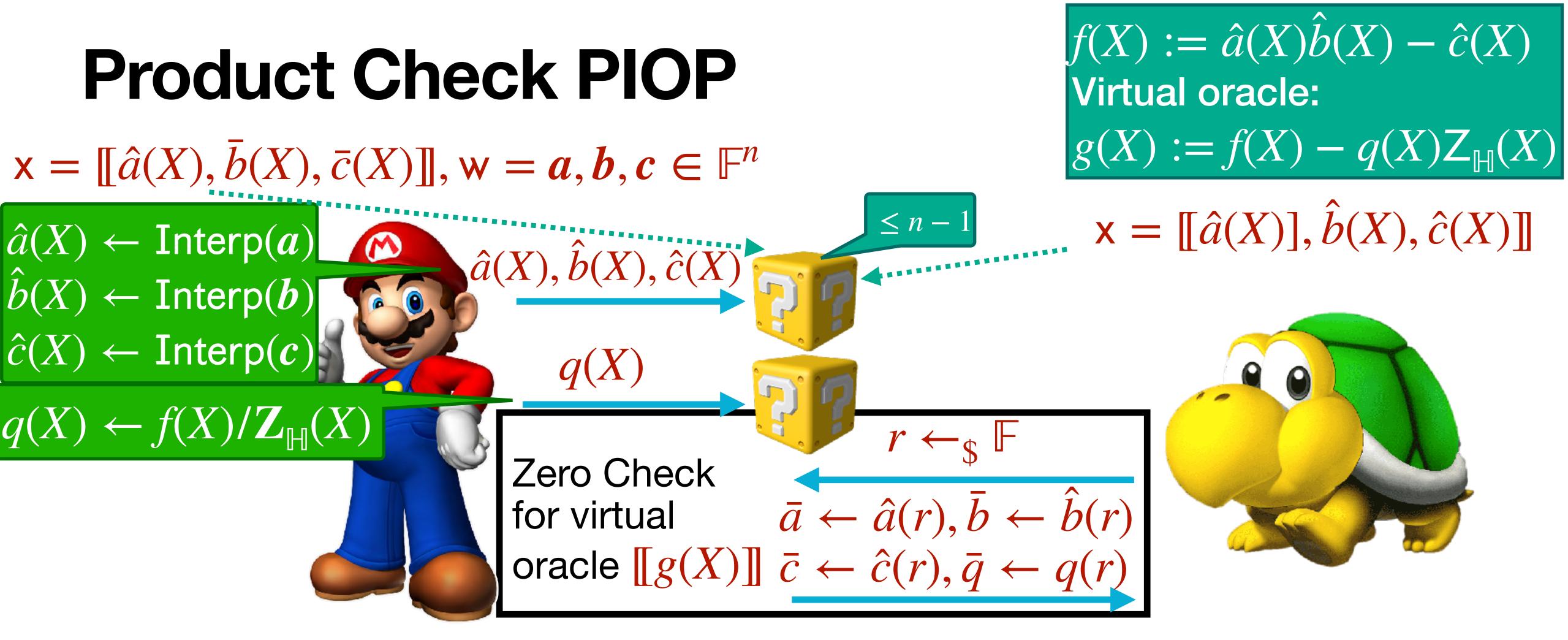


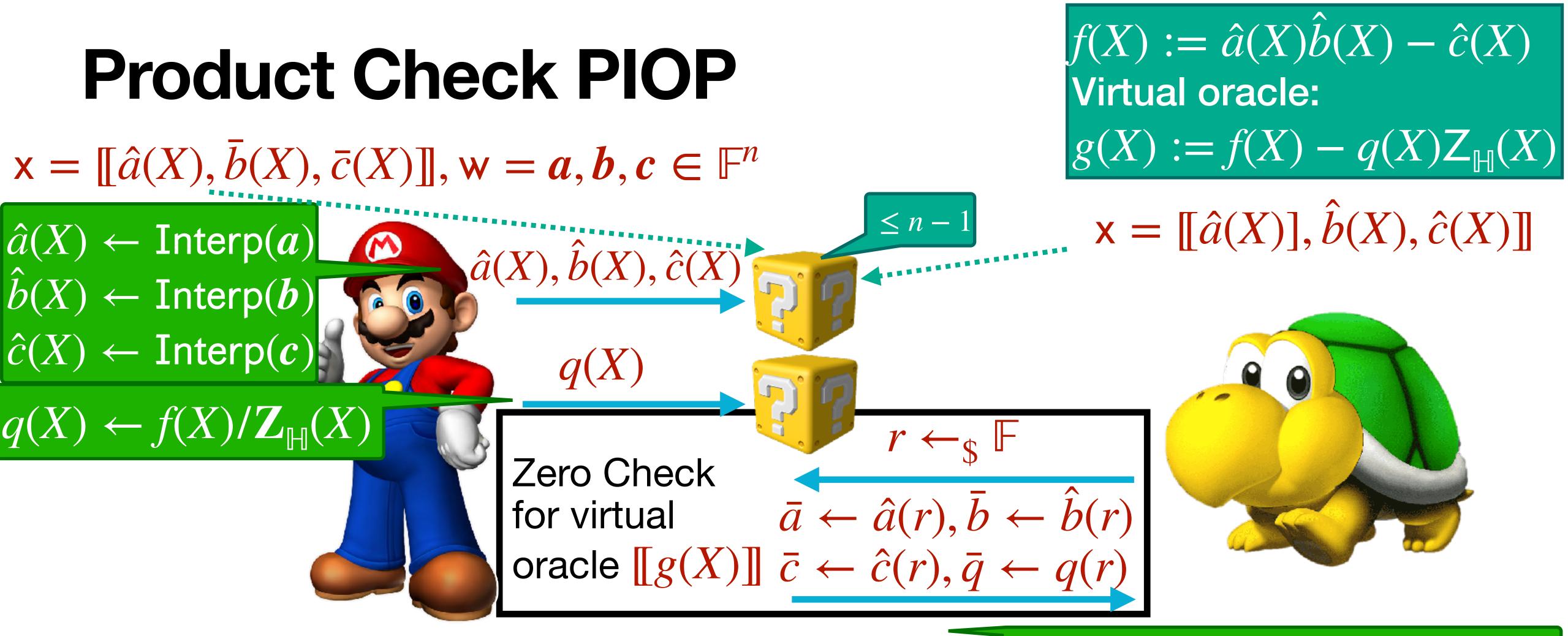
$\mathbf{x} = [[\hat{a}(X)], \hat{b}(X), \hat{c}(X)]]$

 $\leq n-1$

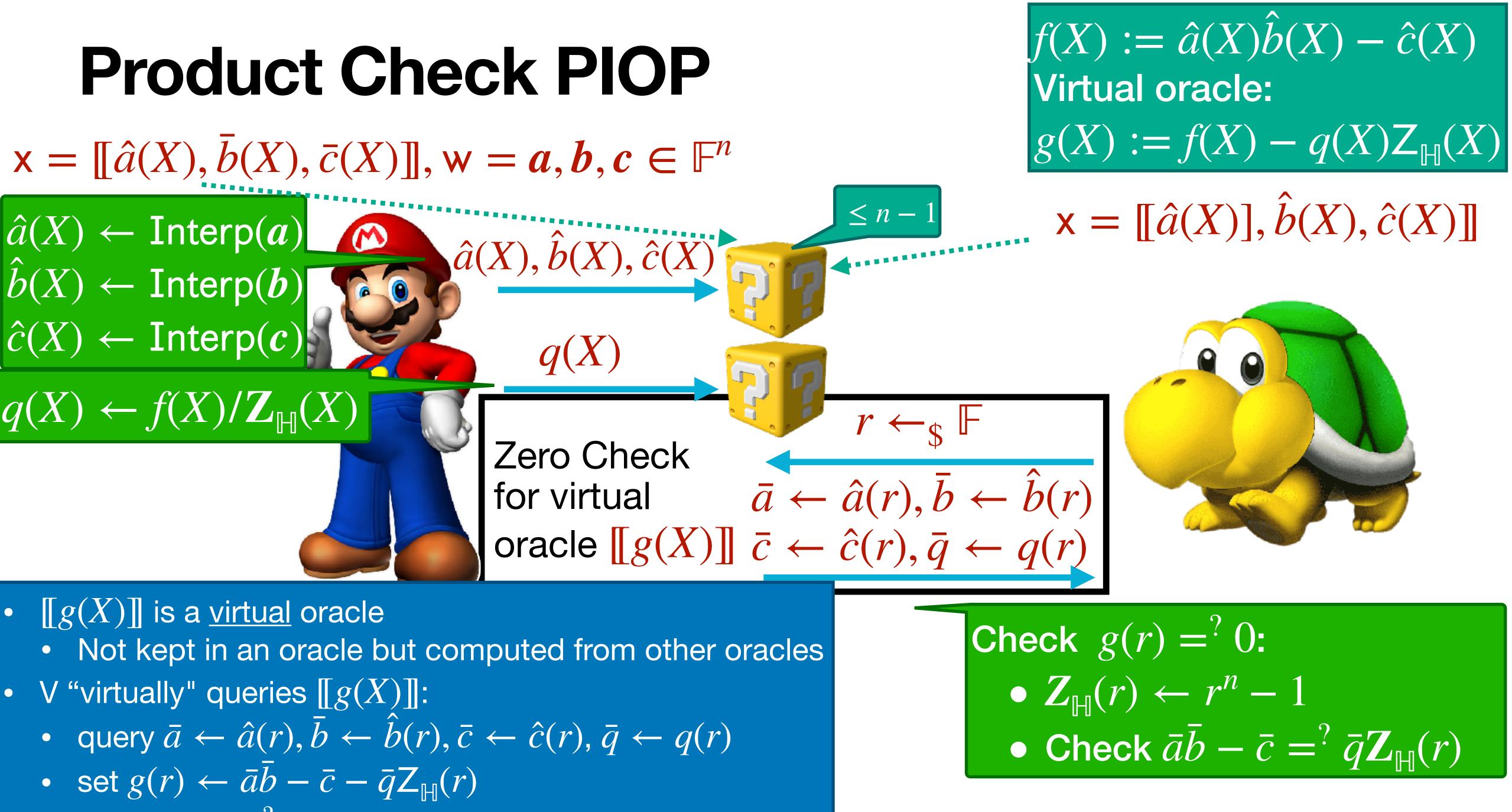






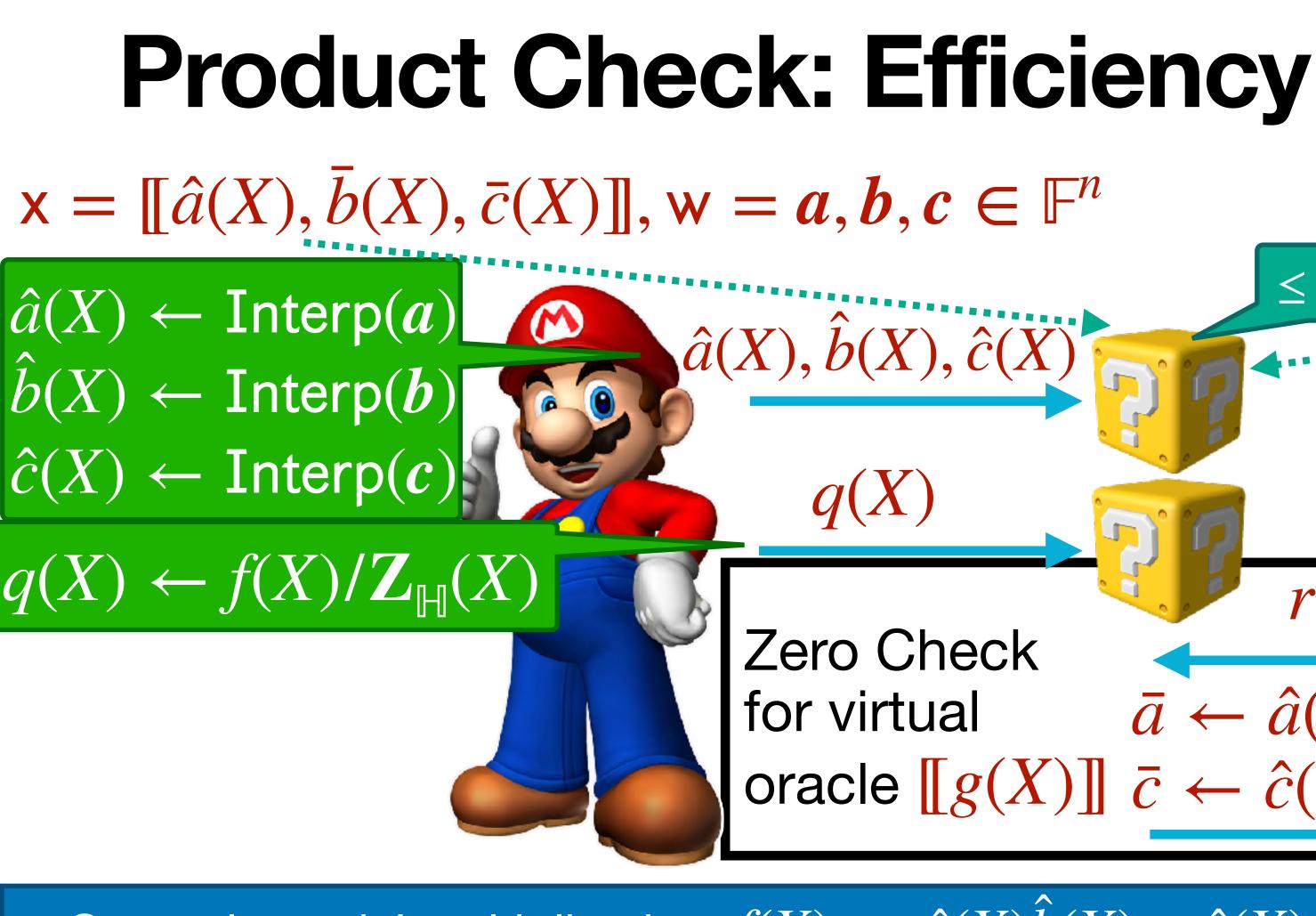


Check g(r) = ? 0: • $\mathbb{Z}_{\mathbb{H}}(r) \leftarrow r^n - 1$ • Check $\bar{a}\bar{b} - \bar{c} = \bar{q}\mathbf{Z}_{\mathbb{H}}(r)$



- - check g(r) = ?0

Efficiency

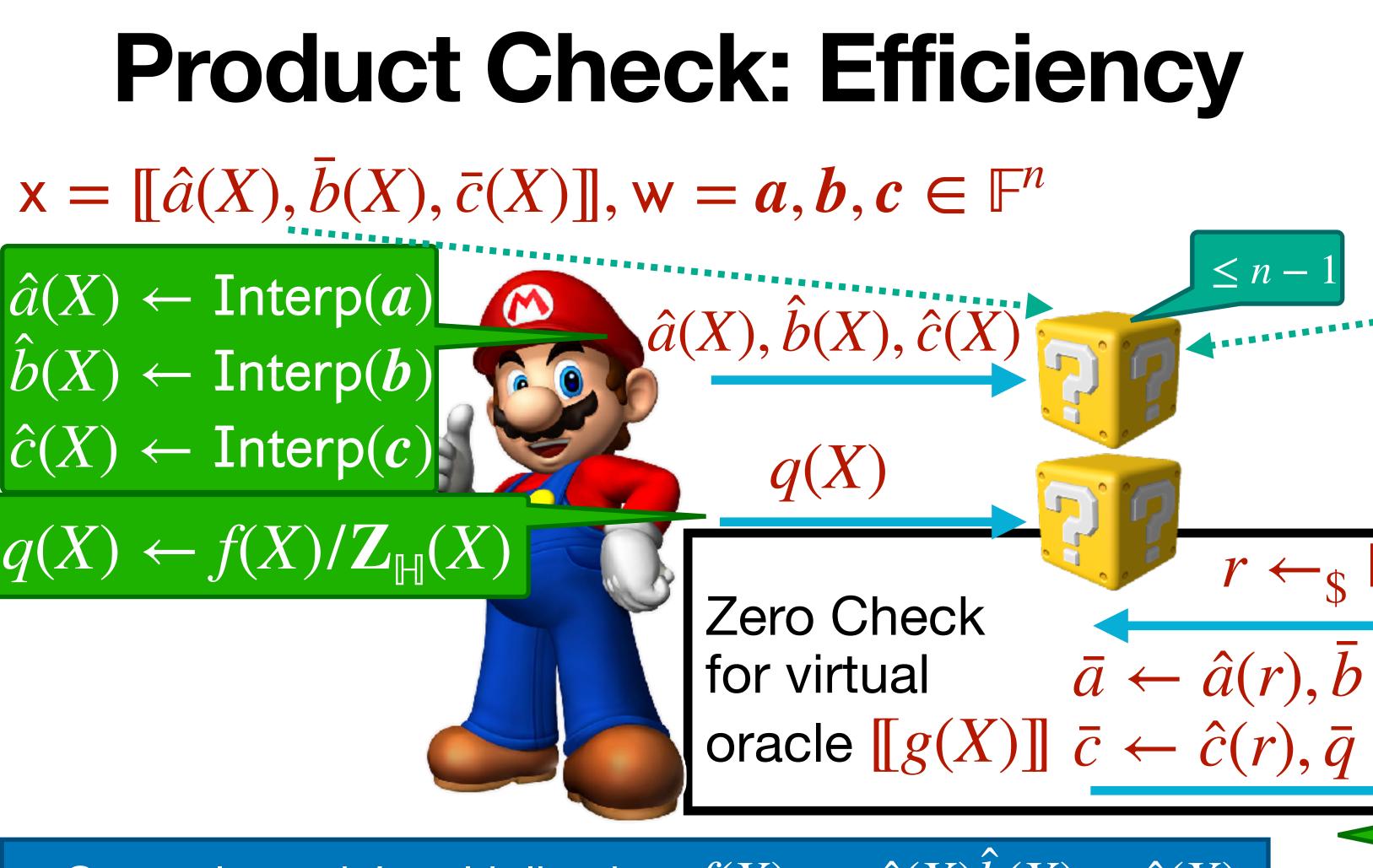


• One polynomial multiplication: $f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X)$

- $O(n \log n)$ field ops // includes FFT & inverse FFT
- 3 interpolations: $a \mapsto \hat{a}(X), \dots$
 - Uses inverse FFT
- Total computation: $O(n \log n)$ field ops

 $f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X)$ Virtual oracle: $g(X) := f(X) - q(X)Z_{\mathbb{H}}(X)$

$\mathbf{x} = [[\hat{a}(X)], \hat{b}(X), \hat{c}(X)]$ $\leq n-1$ $r \leftarrow_{\$} \Vdash$ for virtual $\bar{a} \leftarrow \hat{a}(r), \bar{b}$ oracle [g(X)] $\bar{c} \leftarrow \hat{c}(r), \bar{q}$ Check g(r) = ? 0: • $Z_{\mathbb{H}}(r) \leftarrow r^n - 1$ • Check $\bar{a}\bar{b} - \bar{c} = \bar{q}\mathbf{Z}_{\mathbb{H}}(r)$



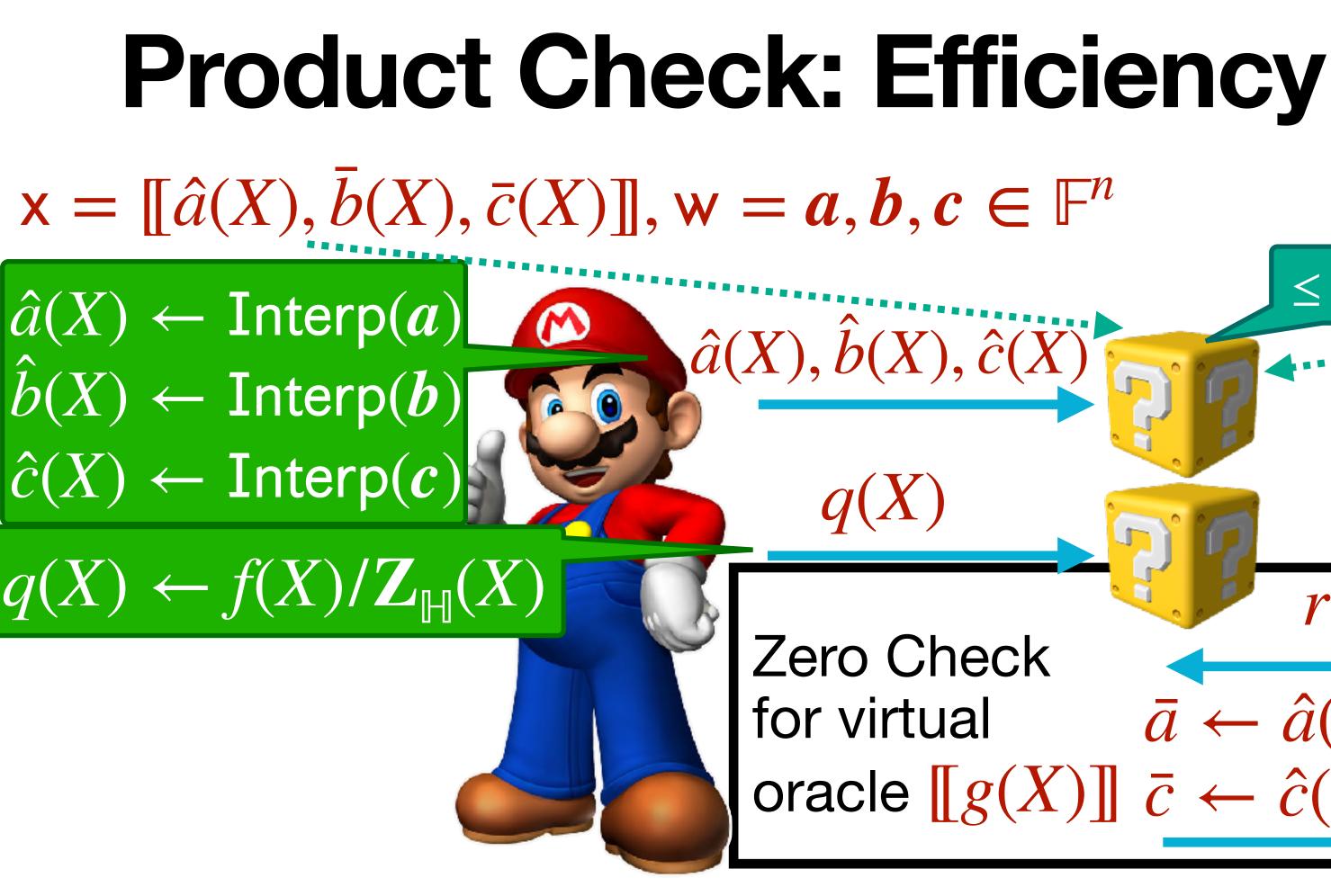
• One polynomial multiplication: $f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X)$

- $O(n \log n)$ field ops // includes FFT & inverse FFT
- 3 interpolations: $a \mapsto \hat{a}(X), \dots$ •
 - Uses inverse FFT
- Total computation: $O(n \log n)$ field ops

 $f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X)$ Virtual oracle: $g(X) := f(X) - q(X) Z_{\mathbb{H}}(X)$

$\mathbf{x} = [[\hat{a}(X)], \hat{b}(X), \hat{c}(X)]]$ $\leq n-1$ $r \leftarrow_{\$} \Vdash$ Check g(r) = ? 0: • $Z_{\mathbb{H}}(r) \leftarrow r^n - 1$ • Check $\bar{a}\bar{b} - \bar{c} = \bar{q}\mathbf{Z}_{\mathbb{H}}(r)$

- Computing $\mathbb{Z}_{\mathbb{H}}(r) // O(\log n)$ f.o. • +2 multiplications
- Total time $O(\log n)$ field ops



 $f(X) := \hat{a}(X)\hat{b}(X) - \hat{c}(X)$ Virtual oracle: $g(X) := f(X) - q(X)Z_{\mathbb{H}}(X)$

$\mathbf{x} = [[\hat{a}(X)], \hat{b}(X), \hat{c}(X)]]$ $\leq n-1$ 0 $r \leftarrow_{\$} \Vdash$ for virtual $\bar{a} \leftarrow \hat{a}(r), \bar{b} \leftarrow \hat{b}(r)$ oracle [[g(X)]] $\bar{c} \leftarrow \hat{c}(r), \bar{q} \leftarrow q(r)$

Check g(r) = ? 0: • $\mathbb{Z}_{\mathbb{H}}(r) \leftarrow r^n - 1$ • Check $\bar{a}\bar{b} - \bar{c} = \bar{q}\mathbf{Z}_{\mathbb{H}}(r)$

• In ZK applications, FFT is used to **interpolate** input vectors but also to multiply polynomials

- In ZK applications, FFT is used to **interpolate** input vectors but also to multiply polynomials

Crucial to understand FFT since it is often prover's dominant cost of PIOPs

- In ZK applications, FFT is used to interpolate input vectors but also to **multiply** polynomials
- - Also, why FFT is often the bottleneck

Crucial to understand FFT since it is often prover's dominant cost of PIOPs

- In ZK applications, FFT is used to interpolate input vectors but also to **multiply** polynomials
- Crucial to understand FFT since it is often prover's dominant cost of PIOPs • Also, why FFT is often the bottleneck
- Most applications of FFT run with relatively small inputs

- In ZK applications, FFT is used to interpolate input vectors but also to **multiply** polynomials
- Crucial to understand FFT since it is often prover's dominant cost of PIOPs • Also, why FFT is often the bottleneck
- Most applications of FFT run with relatively small inputs
- In ZK application case, ideally, $n \approx 2^{32}$

- In ZK applications, FFT is used to interpolate input vectors but also to **multiply** polynomials
- Crucial to understand FFT since it is often prover's dominant cost of PIOPs • Also, why FFT is often the bottleneck
- Most applications of FFT run with relatively small inputs
- In ZK application case, ideally, $n \approx 2^{32}$

• $n = 2^{32} =>$ IFFT is dominated by $\frac{n}{2} \log_2 n = 16n = 2^{36}$ field ops

- In ZK applications, FFT is used to interpolate input vectors but also to **multiply** polynomials
- Crucial to understand FFT since it is often prover's dominant cost of PIOPs • Also, why FFT is often the bottleneck
- Most applications of FFT run with relatively small inputs
- In ZK application case, ideally, $n \approx 2^{32}$
- $n = 2^{32} =>$ IFFT is dominated by $\frac{n}{2} \log_2 n = 16n = 2^{36}$ field ops
 - (5*)16x slowdown is not so bad? // At least n ops is needed by prover!

(5*)16x slowdown is not so bad? // At least n ops is needed by prover!

- (5*)16x slowdown is not so bad? // At least *n* ops is needed by prover!
 - But it's in field ops (and we have a 256-bit field)

At least *n* ops is needed by prover! a 256-bit field)

- (5*)16x slowdown is not so bad? // At least *n* ops is needed by prover!
 - But it's in field ops (and we have a 256-bit field)
- Memory consumption: <u>at least</u> $n = 2^{32}$ field elements

At least *n* ops is needed by prover! a 256-bit field) = 2³² field elements

- (5*)16x slowdown is not so bad? // At least n ops is needed by prover!
 - But it's in **field ops** (and we have a 256-bit field)
- Memory consumption: <u>at least</u> $n = 2^{32}$ field elements

• big f.e.: 256 bits, so $n = 2^{32} \cdot (256/8) = 2^{37}$ bytes = 128 GigaBytes

- (5*)16x slowdown is not so bad? // At least n ops is needed by prover! • But it's in field ops (and we have a 256-bit field) • Memory consumption: <u>at least</u> $n = 2^{32}$ field elements • big f.e.: 256 bits, so $n = 2^{32} \cdot (256/8) = 2^{37}$ bytes = 128 GigaBytes • small f.e.: 32 bits, so $n = 2^{32} \cdot (32/8) = 2^{34}$ bytes = 16 GigaBytes

- (5*)16x slowdown is not so bad? // At least n ops is needed by prover! • But it's in **field ops** (and we have a 256-bit field) • Memory consumption: <u>at least</u> $n = 2^{32}$ field elements • big f.e.: 256 bits, so $n = 2^{32} \cdot (256/8) = 2^{37}$ bytes = 128 GigaBytes • small f.e.: 32 bits, so $n = 2^{32} \cdot (32/8) = 2^{34}$ bytes = 16 GigaBytes

- - Standard FFT requires more than *n* field elements of memory

- (5*)16x slowdown is not so bad? // At least n ops is needed by prover! • But it's in **field ops** (and we have a 256-bit field) • Memory consumption: <u>at least</u> $n = 2^{32}$ field elements • big f.e.: 256 bits, so $n = 2^{32} \cdot (256/8) = 2^{37}$ bytes = 128 GigaBytes • small f.e.: 32 bits, so $n = 2^{32} \cdot (32/8) = 2^{34}$ bytes = 16 GigaBytes

- - Standard FFT requires more than n field elements of memory
 - And in-place FFT algorithms require more time

- (5*)16x slowdown is not so bad? // At least n ops is needed by prover! • But it's in **field ops** (and we have a 256-bit field) • Memory consumption: <u>at least</u> $n = 2^{32}$ field elements • big f.e.: 256 bits, so $n = 2^{32} \cdot (256/8) = 2^{37}$ bytes = 128 GigaBytes • small f.e.: 32 bits, so $n = 2^{32} \cdot (32/8) = 2^{34}$ bytes = 16 GigaBytes

- - Standard FFT requires more than *n* field elements of memory
 - And in-place FFT algorithms require more time
- Memory locality: butterfly-like memory access causes cache misses

Compared to "non-P"IOPs, polynomial IOPs offer two related benefits

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits
- 1. Schwartz-Zippel makes it possible to implement zero check efficiently

mial IOPs offer two related benefits le to implement zero check efficiently

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits
- 1. Schwartz-Zippel makes it possible to implement zero check efficiently

• In general, Schwartz-Zippel is the main reason one can get succinctness

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits
- 1. Schwartz-Zippel makes it possible to implement zero check efficiently

• In general, Schwartz-Zippel is the main reason one can get succinctness Instead of sending "long" polynomials, can send "succinct" evaluations

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits
- 1. Schwartz-Zippel makes it possible to implement zero check efficiently
- 2. "Out of bounds" evaluation:

• In general, Schwartz-Zippel is the main reason one can get succinctness Instead of sending "long" polynomials, can send "succinct" evaluations

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits 1. Schwartz-Zippel makes it possible to implement zero check efficiently • In general, Schwartz-Zippel is the main reason one can get succinctness Instead of sending "long" polynomials, can send "succinct" evaluations

- 2. "Out of bounds" evaluation:
 - While the length of the input vector is N, the polynomial can be evaluated on $\mathbb{F} \gg N$ points

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits 1. Schwartz-Zippel makes it possible to implement zero check efficiently • In general, Schwartz-Zippel is the main reason one can get succinctness Instead of sending "long" polynomials, can send "succinct" evaluations

- 2. "Out of bounds" evaluation:
 - While the length of the input vector is N, the polynomial can be evaluated on $|\mathbb{F}| \gg N$ points
 - This gives one huge freedom in designing more efficient protocols

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits 1. Schwartz-Zippel makes it possible to implement zero check efficiently • In general, Schwartz-Zippel is the main reason one can get succinctness Instead of sending "long" polynomials, can send "succinct" evaluations

- 2. "Out of bounds" evaluation:
 - While the length of the input vector is N, the polynomial can be evaluated on $|\mathbb{F}| \gg N$ points
- This gives one huge freedom in designing more efficient protocols We will see later that the best "non-P"IOP for Zero Check is far from efficient

- Compared to "non-P"IOPs, polynomial IOPs offer two related benefits 1. Schwartz-Zippel makes it possible to implement zero check efficiently • In general, Schwartz-Zippel is the main reason one can get succinctness Instead of sending "long" polynomials, can send "succinct" evaluations

- 2. "Out of bounds" evaluation:
 - While the length of the input vector is N, the polynomial can be evaluated on $|\mathbb{F}| \gg N$ points
- This gives one huge freedom in designing more efficient protocols
- We will see later that the best "non-P"IOP for Zero Check is far from efficient • **Trade-off:** in "non-P"IOPs, one can instantiate crypto more efficiently

arbitrary arithmetic circuit with given complexity + prove security

In two more seminars, we could describe how to construct a PIOP to very an

- arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$

• In two more seminars, we could describe how to construct a PIOP to very an

- arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations

• In two more seminars, we could describe how to construct a PIOP to very an

- In two more seminars, we could describe how to construct a PIOP to very an arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations
- One more seminar: implementing the oracle by using KZG, an elliptic-curve based polynomial commitment scheme

- In two more seminars, we could describe how to construct a PIOP to very an arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations
- One more seminar: implementing the oracle by using KZG, an elliptic-curve based polynomial commitment scheme
 - Adds to costs

- In two more seminars, we could describe how to construct a PIOP to very an arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations
- One more seminar: implementing the oracle by using KZG, an elliptic-curve based polynomial commitment scheme
 - Adds to costs
 - **Prover:** O(n) e.c. group operations, each group op > 256 field operations

- In two more seminars, we could describe how to construct a PIOP to very an arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations
- One more seminar: implementing the oracle by using **KZG**, an elliptic-curve based polynomial commitment scheme
 - Adds to costs
 - **Prover:** O(n) e.c. group operations, each group op > 256 field operations • Verifier: constant number of group operations

- In two more seminars, we could describe how to construct a PIOP to very an arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations
- One more seminar: implementing the oracle by using **KZG**, an elliptic-curve based polynomial commitment scheme
 - Adds to costs
 - **Prover:** O(n) e.c. group operations, each group op > 256 field operations • Verifier: constant number of group operations

 - Crypto part is costly!

- In two more seminars, we could describe how to construct a PIOP to very an arbitrary arithmetic circuit with given complexity + prove security
 - **Prover:** a few FFTs + polynomial multiplications of size $n \ge 2^{24}$
 - Verifier: constant number of field operations
- One more seminar: implementing the oracle by using **KZG**, an elliptic-curve based polynomial commitment scheme
 - Adds to costs
 - **Prover:** O(n) e.c. group operations, each group op > 256 field operations • Verifier: constant number of group operations

 - Crypto part is costly!
- One more seminar: Fiat-Shamir (how to make it non-interactive)

• Described techniques + extra seminars:

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow
 - Converting arbitrary computation to finite field ops and circuits is slow

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow
- Converting arbitrary computation to finite field ops and circuits is slow • Univariate polynomials => multilinear polynomials: no need to interpolate

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow
- Converting arbitrary computation to finite field ops and circuits is slow • Univariate polynomials => multilinear polynomials: no need to interpolate GKR protocol => need to cryptographically commit to less values

- Described techniques + extra seminars:
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow
- Converting arbitrary computation to finite field ops and circuits is slow • Univariate polynomials => multilinear polynomials: no need to interpolate GKR protocol => need to cryptographically commit to less values
- Lookups = store valid gate I/Os in a table, prove all gate I/Os are in that table

- Described techniques + extra seminars: \bullet
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow
- Converting arbitrary computation to finite field ops and circuits is slow • Univariate polynomials => multilinear polynomials: no need to interpolate GKR protocol => need to cryptographically commit to less values
- Lookups = store valid gate I/Os in a table, prove all gate I/Os are in that table
- Folding => fold inputs and witnesses together before doing an operation

- Described techniques + extra seminars: \bullet
 - An ideal-for-verifier solution, but slow for the prover
 - Crypto is slow
 - FFT is slow
- Converting arbitrary computation to finite field ops and circuits is slow • Univariate polynomials => multilinear polynomials: no need to interpolate GKR protocol => need to cryptographically commit to less values
- Lookups = store valid gate I/Os in a table, prove all gate I/Os are in that table
- Folding => fold inputs and witnesses together before doing an operation Code&hash-based => using any fields, hash is fast, post-quantum

More stringent security notions

- More stringent security notions

- More stringent security notions
- Weaker cryptographic assumptions

- More stringent security notions
- Weaker cryptographic assumptions
 - Weaker elliptic-curve assumptions?

- More stringent security notions
- Weaker cryptographic assumptions
 - Weaker elliptic-curve assumptions?
 - Post-quantum?

- More stringent security notions
- Security in environments, where adversary sees arbitrary communication? Weaker cryptographic assumptions
 - Weaker elliptic-curve assumptions?
 - Post-quantum?
- It was just found in 2025 that even Fiat-Shamir is not secure in the case of actually used protocols

- More stringent security notions
- Security in environments, where adversary sees arbitrary communication? Weaker cryptographic assumptions
 - Weaker elliptic-curve assumptions?
 - Post-quantum?
- It was just found in 2025 that even Fiat-Shamir is not secure in the case of actually used protocols
- Formal verification and automated security proofs \bullet

Make better ZK for diverse applications

- Make better ZK for diverse applications
- Big right now:

- Make better ZK for diverse applications
- Big right now:
 - L2 blockchain, zkRollup

- Make better ZK for diverse applications
- Big right now:
 - L2 blockchain, zkRollup
 - zkVM

- Make better ZK for diverse applications
- Big right now:
 - L2 blockchain, zkRollup
 - zkVM
 - zkML

Questions?

Here's a ZK meme

Important References

- (FFT) James W. Cooley, John W. Tukey: An algorithm for the machine calculation of complex Fourier series (1965)
- Classic algorithm, many brilliant presentations, including on YouTube • (Good book on polynomial algorithms) Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra (3. ed.). Cambridge University Press 2013
- PIOP:
 - Benedikt Bünz, Ben Fisch, Alan Szepieniec. Transparent SNARKs from **DARK compilers** (2020)
 - Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS (2020)