Zero-Knowledge Proofs And
ZK-SNARKS (2):
Concrete Protocols

Foundations Seminar

Helger Lipmaa, April 8, 2025

(Polynomial) Interactive Oracle Proof ZK-SNARKs

Non- | Polynomial
cryptqgraphlc | commitment
techniques | scheme

03b534e609362bad4ad14
B78a3becla8735c58721
A569d60350787f5f7511
66381lecd4f05e249dc4c
094a9d0d1cf605c9b2cl
717a2011ch9401026af9c
BOd7b74802bc20533287

Up To Now

* We explored the current high-level landscape of zk-SNARKs

(Polynomial) Interactive Oracle Proof ZK-SNARKs

<K +-‘E;==1€3
cryptographic commitment w = &
techniques scheme v s

Intermediate Representation

Non-

Polynomial

03b534e609362bad4ad14
B78a3becla8735c58721
A569d60350787f5f7511
66381lecd4f05e249dc4c
094a9d0d1cf605c9b2cl
717a2011ch9401026af9c
BOd7b74802bc20533287

Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions

Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions

 Low-degree extensions = interpolating polynomials

Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions
 Low-degree extensions = interpolating polynomials

* We will explain interpolation, omit a.c. (hot enough time)

Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions
 Low-degree extensions = interpolating polynomials
* We will explain interpolation, omit a.c. (hot enough time)

o Simplest possible PIOP: Zero Check

Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions
 Low-degree extensions = interpolating polynomials
* We will explain interpolation, omit a.c. (hot enough time)

o Simplest possible PIOP: Zero Check
 More complicated PIOP: Product Check

Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions
 Low-degree extensions = interpolating polynomials
* We will explain interpolation, omit a.c. (hot enough time)

 Simplest possible PIOP: Zero Check

 More complicated PIOP: Product Check

o Efficiency of product check

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves
 Small field can cause problems: special-soundness, knowledge error

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves
 Small field can cause problems: special-soundness, knowledge error
* Currently, we use univariate polynomials

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves
 Small field can cause problems: special-soundness, knowledge error
* Currently, we use univariate polynomials
» Alternative: multilinear polynomials // not this time

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves
 Small field can cause problems: special-soundness, knowledge error
* Currently, we use univariate polynomials
» Alternative: multilinear polynomials // not this time

» Notation [-_, | X, [, [X|: univariate polynomials over [- of degree < n, < n

Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves
 Small field can cause problems: special-soundness, knowledge error
* Currently, we use univariate polynomials
» Alternative: multilinear polynomials // not this time

» Notation [-_, | X, [, [X|: univariate polynomials over [- of degree < n, < n

e |nput sizen > 224, companies are pushing for n > 28

Reminder: FFT (NTT)

 FFT = multipoint evaluation: f(X) = Z;:Ol [(X) = (fwy),[(®,_1))

Reminder: FFT (NTT)

« FFT = multipoint evaluation: f(X) = Z?:_Ol (X)) = (flwy), ..., 1))
. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = 2::01 1(X)

Reminder: FFT (NTT)

» FFT = multipoint evaluation: f(X) = Zz:ol f(X) = (flwy), ..., [(w,_1))

. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = Z;:Ol 1(X)
e f(X) « Z?:o f(a)i)fi(X) // ¢ (X) are Lagrange polynomials

Reminder: FFT (NTT)

» FFT = multipoint evaluation: f(X) = Zz:ol f(X) = (flwy), ..., [(w,_1))

. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = 2::01 1(X)
e f(X) « Z?:o f(a)i)fi(X) // ¢ (X) are Lagrange polynomials
. Fis “FFT-friendly”: 2°% | (|F| — 1)

Reminder: FFT (NTT)

« FFT = multipoint evaluation: f(X) = Zz:ol (X)) = (flwy), ..., 1))
. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = Z;:Ol 1(X)

e f(X) « Z?:O f"?(X) // £(X) are Lagrange polynomials
. Fis “FFT-friendly”: 2°% | (|F| — 1)

. Exists H = (w) = {@': i € [0,n — 1]}: mult. subgroup of

-+ of order n

Reminder: FFT (NTT)

. FFT = multipoint evaluation: f(X) = Zz:ol X)) = (flwy), ..., f(w,_1))
. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = Z;:Ol 1(X)
e f(X) « Z?:O f"?(X) // £(X) are Lagrange polynomials

. Fis “FFT-friendly”: 2°% | (|F| — 1)
. Exists H = (w) = {@': i € [0,n — 1]}: mult. subgroup of FF* of order n

. FFT f(X) = 2::01 f(X) — (f(a)o), ...,f(a)”_l)) in O(n log n) field ops

Reminder: FFT (NTT)

. FFT = multipoint evaluation: f(X) = Zz:ol X)) = (flwy), ..., f(w,_1))
. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = Z;:Ol 1(X)
e f(X) « Z?:O f"?(X) // £(X) are Lagrange polynomials

. Fis “FFT-friendly”: 2°% | (|F| — 1)
. Exists H = (w) = {@w': i € [0,n — 1]}: mult. subgroup of F* of order n

. FFT f(X) = 2::01 f(X) — (@), ...,@") in O(n log n) field ops
. Interpolation (f(@"), ..., @) = fIX) = 2::01 fX) in O(nlogn) f.o.

Reminder: FFT (NTT)

. FFT = multipoint evaluation: f(X) = Zz:ol X)) = (flwy), ..., f(w,_1))
. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = Z;:Ol 1(X)
e f(X) « Z?:O f"?(X) // £(X) are Lagrange polynomials

. Fis “FFT-friendly”: 2°% | (|F| — 1)
. Exists H = (w) = {@': i € [0,n — 1]}: mult. subgroup of FF* of order n

. FFT f(X) = 2::01 f(X) — (@), ...,@") in O(n log n) field ops
. Interpolation (f(@"), ..., @) = fIX) = 2::01 fX) in O(nlogn) f.o.

e => almost all univariate PIOP based SNARKs use such fields

Reminder: Polynomial IOP

X,w=a € [
f1(X) = Ency(a) € [, [X]

Accept/reject
based on

W randomizers and
 queried evaluations

Reminder: Polynomial IOP greswoem

give some guarantees,

X,w=a¢&€[" _
fiX) =Enci(a) e F_ [X] like deg(f) < n

Accept/reject
based on

W randomizers and
. queried evaluations

Zero Check

First PIOP: Zero Check

 Witness: vectora € [H*

First PIOP: Zero Check

» Witness: vectora € [
* Any vector somewhere in the middle of calculations...

First PIOP: Zero Check

 Witness: vectora € [H*

* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

First PIOP: Zero Check

 Witness: vectora € [H*

* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

 "Public input": oracletoa € ["

First PIOP: Zero Check

» Witness: vectora € [
* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

 "Public input": oracletoa € ["

» Goal: The prover aims to convice the verifiera = () is zero vector

First PIOP: Zero Check

 Witness: vectora € [H*

* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

 "Public input": oracletoa € ["

» Goal: The prover aims to convice the verifiera = () is zero vector

» Formally: prove (x,w) € X, for £y := {(M,a) : Enc(a) c BAa =0}

First PIOP: Zero Check

 Witness: vectora € [H*

* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

» "Public input": oracletoa € [
» Goal: The prover aims to convice the verifiera = () is zero vector
» Formally: prove (x,w) € X, for £y := {(M,a) : Enc(a) c BAa =0}

 However, we have PIOP, so oracle contains a polynomial

First PIOP: Zero Check

 Witness: vectora € [H*

* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

 "Public input": oracletoa € ["

» Goal: The prover aims to convice the verifiera = () is zero vector

» Formally: prove (x,w) € X, for £y := {(M,a) : Enc(a) c BAa =0}
 However, we have PIOP, so oracle contains a polynomial
* We will explain that next...

Zero Check

Motivation

o Zero Check is a very basic check

Zero Check

Motivation

o Zero Check is a very basic check

* Underlies essentially anything else

Zero Check

Motivation

o Zero Check is a very basic check

* Underlies essentially anything else

« Example:a=b<a—-—b =10

Zero Check

Motivation

o Zero Check is a very basic check

* Underlies essentially anything else
« Example:a=b<a—-—b =0

cea+b=cca+b—-—-c=0

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie [1,n].dlw™)) = a;

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie [1,n].dlw™)) = a;

» Enc and its inverse (Enc:_1 = FF 1) are bijective, efficiently computable

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie [1,n].dlw™)) = a;
» Enc and its inverse (Enc:_1 = FF 1) are bijective, efficiently computable
. Zero check:a = 0iff A(w'™") = O foralli € [1,n]

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie [1,n].dlw™)) = a;
» Enc and its inverse (Enc:_1 = FF 1) are bijective, efficiently computable
. Zero check:a = 0 iff A(w'™') = Oforall i € [1,n]
- If a(X) € [_,_,[X], the latter holds iff a(X) = 0

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie [1,n].dlw™)) = a;
» Enc and its inverse (Enc:_1 = FF 1) are bijective, efficiently computable
. Zero check:a = 0 iff A(w'™') = Oforall i € [1,n]
- If a(X) € [_,_,[X], the latter holds iff a(X) = 0

» Zero Check with oracles for [, _[X| is really trivial

Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie[1n].d(@w™) =a,
» Enc and its inverse (Enc:_1 = FF 1) are bijective, efficiently computable
. Zero check:a = 0iff A(w'™") = O foralli € [1,n]
- If a(X) € [_,_,[X], the latter holds iff a(X) = 0
» Zero Check with oracles for [, _[X| is really trivial

« Assuming the oracle guarantees the polynomial has "low degree” <n — 1

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0
 How to do it efficiently?

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?
 What do we mean by “efficiently”?

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?
 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending d(X) to verifier is not efficient

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending a(X) to verifier is not efficient
» Hint 1: we can query the values of d(X) at any location

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending d(X) to verifier is not efficient

» Hint 1: we can query the values of d(X) at any location
 Hint 2: the verifier can toss random coins

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending d(X) to verifier is not efficient

» Hint 1: we can query the values of d(X) at any location
 Hint 2: the verifier can toss random coins

» Idea . :testthat a(r) = O for random r sampled by the verifier

Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending a(X) to verifier is not efficient

» Hint 1: we can query the values of d(X) at any location
 Hint 2: the verifier can toss random coins

» Idea . :test that d(r) = O for random r sampled by the verifier

Why does this idea work?

Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Low-degree polynomials
don’t have too many roots

Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

 Proof: Straightforward since f(X) has at most 7 roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Low-degree polynomials
don’t have too many roots

Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

 Proof: Straightforward since f(X) has at most 7 roots

» Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of [-

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Low-degree polynomials
don’t have too many roots

Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

 Proof: Straightforward since f(X) has at most 7 roots
» Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of [-

» Lemma (Schwartz-Zippel). Let /(X) € [F[X, ..., X | be a non-zero polynomial of
total degree n > 0. Let 5 be a finite subset of I. Let r, ..., 7,, ¢ S be sampled

uniformly at random. Then the probability that (7, ..., r,) = Ois at most n/|S|.

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Low-degree polynomials
don’t have too many roots

Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

 Proof: Straightforward since f(X) has at most 7 roots
» Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of [-

» Lemma (Schwartz-Zippel). Let /(X) € [F[X, ..., X | be a non-zero polynomial of
total degree n > 0. Let 5 be a finite subset of I. Let r, ..., 7,, ¢ S be sampled

uniformly at random. Then the probability that (7, ..., r,) = Ois at most n/|S|.

e See https://en.wikipedia.org/wiki/Schwartz-Zippel lemma for a proof

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Low-degree polynomials
don’t have too many roots

Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

 Proof: Straightforward since f(X) has at most 7 roots
» Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of [-

» Lemma (Schwartz-Zippel). Let /(X) € [F[X, ..., X | be a non-zero polynomial of
total degree n > (. Let S be a finite subset of [. Let Fls eoes By < S be sampled

uniformly at random. Then the probability that (7, ..., r,) = Ois at most n/|S|.

e See https://en.wikipedia.org/wiki/Schwartz-Zippel lemma for a proof

o Schwartz-Zippel is hugely important in constructing efficient zk-SNARKs

* We mostly just use the first lemma (but still call it Schwartz-Zippel)

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

On Schwartz-Zippel

« Degree mantra: if /(X) # 0O then
f(r) # 0 with “high” probability

On Schwartz-Zippel

« Degree mantra: if /(X) # 0O then
f(r) # 0 with “high” probability
 Schwartz-Zippel is extremely useful tool

On Schwartz-Zippel

« Degree mantra: if /(X) # 0O then

f(r) # 0 with “high” probability
 Schwartz-Zippel is extremely useful tool
* |ntuition why so useful:

25

20}

On Schwartz-Zippel

15 -

10 -

« Degree mantra: if /(X) # 0O then
f(r) # 0 with “high” probability
» Schwartz-Zippel is extremely useful tool

l
-2

e Intuition why so useful: B

- If f(X) € [X]|and g(X) € [, [X] differ at a single point, they differ on
an overwhelming faction of points of |-

25

20}

On Schwartz-Zippel

15 -

« Degree mantra: if /(X) # 0O then ol
f(r) # 0 with “high” probability

» Schwartz-Zippel is extremely useful tool

e Intuition why so useful: -
- If f(X) € [X]|and g(X) € [, [X] differ at a single point, they differ on
an overwhelming faction of points of |-

25

20}

On Schwartz-Zippel

15 -

« Degree mantra: if /(X) # 0O then ol
f(r) # 0 with “high” probability

» Schwartz-Zippel is extremely useful tool

e Intuition why so useful: -
- If f(X) € [X]|and g(X) € [, [X] differ at a single point, they differ on
an overwhelming faction of points of |-

* Thus, If prover cheats even at one point, the verifier can discover the
cheating (w.h.p.), querying a random point of the polynomial

25

20}

On Schwartz-Zippel

« Degree mantra: if /(X) # 0O then ol
f(r) # 0 with “high” probability

» Schwartz-Zippel is extremely useful tool

e Intuition why so useful: B

- If f(X) € [_,[X]|and g(X) € [, [X] differ at a single point, they differ on
an overwhelming faction of points of |-

* Thus, If prover cheats even at one point, the verifier can discover the
cheating (w.h.p.), querying a random point of the polynomial

e “Smears" around the error — akin to error-correcting codes

“Trivial” Zero Check PIOP

n

X=Q0,W=a € [

“Trivial” Zero Check PIOP

n

X=g,w=a € [

“Trivial” Zero Check PIOP

n

X=g,w=a € [

“Trivial” Zero Check PIOP

n

X=g,w=a € [

“Trivial” Zero Check PIOP

n

X=g,w=a € [

Note: the goal of the protocol is to check a = ()

This protocol makes little sense if nothing about a is given
as an input to the protocol // what exactly is = (?
Solution: an oracle [[a(X)]] is a part of the input

R ={x,w): x=[dX)]Aw=FFT@aX)) Aw=20}

“Trivial” Zero Check PIOP

x—[[a(X)]] w=a=0¢el"

“Trivial” Zero Check PIOP

x—[[d(X)]] w=a=0€l

Zero Check

a < a(r) i A
—_— ;

“Trivial” Zero Check PIOP

x—[[a(X)]] w=a=0€l

Zero Check

a < a(r)

—_—— |

“Trivial” Zero Check PIOP

x—[[a(X)]] w=a=0€l

Zero Check

a < a(r)
—’

R ={x,w): x=[dX)J]Aw=FFT(aX)) Aw=0)}
* In general, PIOP is a proof of knowledge of knowing the

contents of the oracles that satisfy some relation

* |n zk-SNARKSs, when replacing oracles with commitments,
we get a proof of knowledge of knowing the contents of
the commitments that satisfy some relation

Product Check

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector a, check Vi.a(a,— 1) =0

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector a, check Vi.a(a,— 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector a, check Vi.a(a,— 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials
» Intermediate polyn’s in other checks can have higher degree than |H | = n

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials

» Intermediate polyn’s in other checks can have higher degree than |H | = n
» Product check has virtual oracle a(X)b(X) — ¢(X) of degree < 2n — 1

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials
» Intermediate polyn’s in other checks can have higher degree than |H | = n
» Product check has virtual oracle a(X)b(X) — ¢(X) of degree < 2n — 1

* Does not fit into n-degree polynomial oracle!

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials

» Intermediate polyn’s in other checks can have higher degree than |H | = n
» Product check has virtual oracle a(X)b(X) — ¢(X) of degree < 2n — 1

* Does not fit into n-degree polynomial oracle!
 Need to modify zero check to work with high-degree “virtual" oracles

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials
» Intermediate polyn’s in other checks can have higher degree than |H | = n

» Product check has virtual oracle &(X)@(X) — ¢(X) of degree < 2n — 1

* Does not fit into n-degree polynomial oracle!

 Need to modify zero check to work with high-degree “virtual" oracles
 We will give a concrete example for “product check”

“Virtual” Zero Check

 Zero check is always used as a subroutine (not as a separate goal)
¢ Simple example use cases:

 Boolean check: given input vector @, check Vi.a(a;, — 1) =0
- Addition check: given input vectors a, b, ¢, check Vi.a.+ b, — ¢, = 0
» Product check: given input vectors a, b, ¢, check Vi.ab. — c. = 0

» Above described zero check works with degree- < (n — 1) polynomials

» Intermediate polyn’s in other checks can have higher degree than |H | = n
» Product check has virtual oracle a(X)b(X) — ¢(X) of degree < 2n — 1

* Does not fit into n-degree polynomial oracle!
 Need to modify zero check to work with high-degree “virtual" oracles
 We will give a concrete example for “product check”
* |n addition, adding ZK will increase the degree of “virtual" oracles

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := HS€ . (X — s

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — S
o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n
» Any polynomial f(X) that vanishes on & has all s; € & as roots

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n
» Any polynomial f(X) that vanishes on & has all s; € & as roots
» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n
» Any polynomial f(X) that vanishes on & has all s; € & as roots
» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)
» Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write
f(X) = qg(X)(X — 5) + rfor a polynomial g(X) and remainder r € [

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n
» Any polynomial f(X) that vanishes on & has all s; € & as roots
» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)
» Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write
f(X) = qg(X)(X — 5) + rfor a polynomial g(X) and remainder r € [
 Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n
» Any polynomial f(X) that vanishes on & has all s; € & as roots
» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)
» Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write
f(X) = qg(X)(X — 5) + rfor a polynomial g(X) and remainder r € [
 Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
» Thus, f(X) = g(X)(X — s) and (X —s) | /(X)

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n

» Any polynomial f(X) that vanishes on & has all s; € & as roots

» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)
» Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write

f(X) = qg(X)(X — 5) + rfor a polynomial g(X) and remainder r € [

 Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
» Thus, f(X) = g(X)(X — s) and (X —s) | /(X)

e Lemma. Ifdeg(f) = N > n — 1 and f(X) vanishes on &', then f(X) = g(X)Z o(X)
for some g(X) € F_y_,[X]

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n

» Any polynomial f(X) that vanishes on & has all s; € & as roots

» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)
» Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write

f(X) = qg(X)(X — 5) + rfor a polynomial g(X) and remainder r € [

 Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
» Thus, f(X) = g(X)(X —s) and (X —) | A(X)

e Lemma. Ifdeg(f) = N > n — 1 and f(X) vanishes on &', then f(X) = g(X)Z o(X)
for some g(X) € F_y_,[X]

» 7 ¢ is unique, minimal-degree, monic, non-zero poly that vanishes exactly on &

Vanishing Polynomials

. Defn. Vanishing polynomial of set &: Z o(X) := Hse . (X — s

o Zy(s)=0fors €38, Zy(s) # 0 otherwise; deg(Z o) = n
» Any polynomial f(X) that vanishes on & has all s; € & as roots
» Since (X —) | f(X)foralls € & =>17Z (X) | f(X)
» Assume f(s) = 0. Use polynomial long division (Extended Euclidean) to write
f(X) = qg(X)(X — 5) + rfor a polynomial g(X) and remainder r € [
 Evaluating LHS and RHS at X = s, we get f(s) = r, thus r = 0
» Thus, f(X) = g(X)(X — s) and (X —s) | /(X)
e Lemma. Ifdeg(f) = N > n — 1 and f(X) vanishes on &', then f(X) = g(X)Z o(X)
for some g(X) € F_y_,[X]
» 7 ¢ is unique, minimal-degree, monic, non-zero poly that vanishes exactly on &
. Important fact: Z,(X) = Hi(X — 0™ = X" = 1since (0" = "7 =

Polynomial View of
Product Check

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Polynomial View of
Product Check

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

& Vie[ln]. i@ Hb(w™) — &= =0

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

& Vie[ln]. i@ Hb(w™) — &= =0

/1a(X) =Y, at(X) = IFFT(a) € F,_[X], etc

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

e Vie|[l,n].ab;, = c;
oVielln].ab,—c; =0
& Vi€ [1,n]. 4@ Hb(w™) = (@™ =0
/1a(X) =Y, at(X) = IFFT(a) € F,_[X], etc

1Y 1

& A(X) = AaX)b(X) — é(X) € 5,1 X] vanishes on [H

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

e Vie|[l,n].ab;, = c;
oVielln].ab,—c; =0
& Vie [ln].al@ Hbw™") — &™) =0
/1a(X) =Y, at(X) = IFFT(a) € F,_[X], etc

& A(X) = AaX)b(X) — é(X) € 5,1 X] vanishes on [H
& Ly(X) | f(X)

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

e Vie|[l,n].ab;, = c;
oVielln].ab,—c; =0
& Vi€ [1,n]. 4@ Hb(w™) = (@™ =0
/1a(X) =Y, at(X) = IFFT(a) € F,_[X], etc
& AX) = &(X)@(X) — ¢(X) € F,,_»[X] vanishes on H
& Ly(X) | (X)

& dq(X) € kg, ol X]. f(X) = g(X)Zy(X) (1)

l

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

e Vie|[l,n].ab;, = c;
oVielln].ab,—c; =0
& Vie [1,n]. 4@ Hb(@w'™) — éw™") =0
/1a(X) =Y, at(X) = IFFT(a) € F,_[X], etc
& AX) = &(X)@(X) — ¢(X) € F,,_»[X] vanishes on H
& Ly(X) | (X)
& dg(X) € F,_,[X].f(X) = g(X)Zy(X) (1)

» Prover needs to prove that it “knows” a(X), I;(X), ¢(X) and g(X) satisfying (1)

l

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

Interpolation/polynomial evaluation:

fast algorithms to get from witness to

P0|yn0mia| View Of polynomial encoding and back
Product Check

 NB! This is a standard way of using univariate

polynomials —need to internalise It!

e Vie|[l,n].ab;, = c;
oVielln].ab,—c; =0
& Vie [1,n]. 4@ Hb(@w'™) — éw™") =0

/1a(X) =Y, at(X) = IFFT(a) € F,_[X], etc
& AX) = &(X)@(X) — ¢(X) € F,,_»[X] vanishes on H
& Ly(X) | (X)
& dg(X) € F,_,[X].f(X) = g(X)Zy(X) (1)

» Prover needs to prove that it “knows” a(X), I;(X), ¢(X) and g(X) satisfying (1)

R = {(x,w) : x = [aX), b(X), ¢ AW = (a,b, c) = (FFT(4(X)), FFT(b(X)), FFT(é(X))) AVi € [1,n]ab; = c;}

(X) := a(X)b(X) — &(X)

Product Check PIOP Virtual oracle:

x = [4(X), b(X),eX)],w = a,b,c € F" 8(X) = f(X) — q(X)Zy(X)
x = [a(X)], bX), eX0)]

a(X) <« Interp(a)
b(X) < Interp(b)j) — r“J
c(X) < Interp(c):

X) := 4aX)b(X) — (X
Product Check PIOP AX) 2= aXBX) = 8X)

x = [4(X), b(X),eX)],w = a,b,c € F" 8(X) = f(X) — q(X)Zy(X)

a(X) < Interp(a)) x = [aX)], b(X), ¢(X)]
b(X) < Interp(d) [k &
c(X) < Interp(c): =,

q(X) — f(X)/Ly(X)

X) := 4X)b(X) — ¢ X)
Product Check PIOP AX) 1= aXbX) = &
x = [4(X), B(X), &)1, w = a,b, ¢ € F" ¢(X) = f(X) — g(X)Zyy(X)

e Int) ... x = [a(X)], b(X), ¢

I;(X) A Interp(b) .
6(X) <« Interp(c); A

I\J

L]

q(X) < fX)ILy(X) K P r—F
1~ | Zero Check e |
for virtual a < da(r),b < b(r)

oracle [[g(X)]] ¢ « ¢(r), g « g(r

(X) := a(X)b(X) — &(X)

Product Check PIOP Virtual oracle:

x = [a(X),b(X),e(X)],w = a,b,c € F" g(X) := f(X) — q(X)ZLy(X)
................. x = [0, DX, 00T

4a(X) < Interp(@) Il \DVENEIRC N
lg (X) « Interp(b)

r“J

c(X) < Interp(c): R

“ L - ﬁrj -
q(X) « X Zy(X) | S ey - g J
1~ | Zero Check — | i
for virtual a<— da(r),b <« b(r)

oracle [[g(X)]] ¢ « ¢(r), g « g(r

Check g(r) =’ 0:

o Z.(r) <« r"—1
e Check ab — ¢ =" qZ(7)

(X) := a(X)b(X) — &(X)

Product Check PIOP Virtual oracle:

x = [4(X), b(X),eX)],w = a,b,c € F" 8(X) = f(X) — q(X)Zy(X)

x = [aX)], b(X), ¢X)]]

a(X) « Interp(a)
h(X) < Interp(b) (X0, b0, X

c(X) < Interp(c): “:" | q(X)
qX) < fXOIZy(X) K

I\J

r <—$ Iz |
Zero Check <@ |
for virtual a < da(r),b < b(r)

oracle [[g(X)]] ¢ « ¢(r), g « g(r

e [[e(X)] is a virtual oracle
 Not kept in an oracle but computed from other oracles

.V “virtually" queries [¢(X)]:

Check g(r) =’ 0:

. query @ < a(r),b < b(r), ¢ < &(r), g < q(r) o Check ab — ¢ = GZy(r)
» setg(r) « ab—c— qly(r)

. check g(r) =" 0

Efficiency

X) := 4aX)b(X) — (X
Product Check: Efficiency V(i,.tz,a, Ofafc,g:()~ &)

x = [4(X), b(X),eX)],w = a,b,c € F" 8(X) = f(X) — q(X)Zy(X)

200 < oo [P x = [AX)], b(X), X
IAa(X) — Interp(b) IR 2O, -
c(X) < Interp(c): =z,

4X) — fXIZyX) |

Zero Check SETE———
for virtual a < a(r),b ‘
oracle [g(X)]| ¢ « &(r), G b g(r) ="0:

o £, (r) «1r"—1

+ One polynomial multiplication: f(X) := a(X)b(X) — &(X) e Checkab — ¢ =" gLy, (r)
» O(nlogn) field ops // includes FFT & inverse FFT

‘

« 3interpolations: a — a(X), ...
* Uses inverse FFT

» Total computation: O(n log n) field ops

P X) := 4aX)b(X) — (X
Product Check: Efficiency V(i,.tz,a, Ofafc,g:() = @)

X = [[&(X),E(X) cX)],w=a,b,c " g(X) = f(X) — q(X)ZLy(X)

a(X) < Interp(a) x = [a(X)], b(X), ¢(X)]
b(X) < Interp(b) . S (w T J

»

&(X) < Interp(c)’ B & g(X)

4X) < fOOIZy(X) | P

Zero Check — e | i _,-
for virtual a < a(r),b ‘ —

?).
oracle [[g(X)]] C «— C(F) q Check (7‘) =" ():
o /,.(r) < r"—1
+ One polynomial multiplication: f(X) := a(X)b(X) — &(X) e Checkab — ¢ =" gLy, (r)
» O(nlogn) field ops // includes FFT & inverse FFT _
» 3interpolations: a — a(X), ... » Computing Zy(r) // O(logn) f.o.
e |Jses inverse FFT ¢ +2 mUIt|pl|Cat|OnS
» Total computation: O(n log n) field ops » Total time O(log n) field ops

X) := 4X)b(X) — ¢ X)
Product Check: Efficiency) = dE S
x = [a(X),bX),cX),w =a,b,c € F’ g(X) 1= fX) — gX)Zy(X)

e Int) ... x = [a(X)], b(X), ¢

B(X) N Interp(b) ‘
6(X) <« Interp(c); n S

r“J

- ﬁrrjh
1~ | Zero Check ——ee . | i &
for virtual a<— da(r),b <« b(r)

oracle [[g(X)]] ¢ « ¢(r), g « g(r

Check g(r) =" 0:

o Z.(r) <« r"—1
e Check ab — ¢ =" qZ(7)

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

* Crucial to understand FFT since it is often prover's dominant cost of PIOPs

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials
* Crucial to understand FFT since it is often prover's dominant cost of PIOPs

 Also, why FFT is often the bottleneck

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

* Crucial to understand FFT since it is often prover's dominant cost of PIOPs
 Also, why FFT is often the bottleneck
 Most applications of FFT run with relatively small inputs

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

* Crucial to understand FFT since it is often prover's dominant cost of PIOPs
 Also, why FFT is often the bottleneck
 Most applications of FFT run with relatively small inputs

. In ZK application case, ideally, n ~ 277

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

* Crucial to understand FFT since it is often prover's dominant cost of PIOPs

 Also, why FFT is often the bottleneck
 Most applications of FFT run with relatively small inputs

. In ZK application case, ideally, n ~ 277

. 1 = 2°% => IFFT is dominated by %logzn = 16n = 2°° field ops

FFT And ZK Applications

* |In ZK applications, FFT is used to interpolate input vectors but also to
multiply polynomials

* Crucial to understand FFT since it is often prover's dominant cost of PIOPs

 Also, why FFT is often the bottleneck
 Most applications of FFT run with relatively small inputs

. In ZK application case, ideally, n ~ 277

. 1 = 2°% => IFFT is dominated by %Ingn = 16n = 2°° field ops

e (5")16x slowdown is not so bad? // At least n ops Is needed by prover!

FFT: Memory Problems

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements
» big f.e.: 256 bits, so n = 2° - (256/8) = 2°/ bytes = 128 GigaBytes

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements
» big f.e.: 256 bits, so n = 2° - (256/8) = 2°/ bytes = 128 GigaBytes
. small f.e.: 32 bits, so n = 2°7 - (32/8) = 2°% bytes = 16 GigaBytes

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements
» big f.e.: 256 bits, so n = 2° - (256/8) = 2°/ bytes = 128 GigaBytes
. small f.e.: 32 bits, so n = 2°7 - (32/8) = 2°% bytes = 16 GigaBytes

o Standard FFT requires more than 7 field elements of memory

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements
» big f.e.: 256 bits, so n = 2° - (256/8) = 2°/ bytes = 128 GigaBytes
. small f.e.: 32 bits, so n = 2°7 - (32/8) = 2°% bytes = 16 GigaBytes

o Standard FFT requires more than 7 field elements of memory
 And in-place FFT algorithms require more time

FFT: Memory Problems

e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements
» big f.e.: 256 bits, so n = 2° - (256/8) = 2°/ bytes = 128 GigaBytes
. small f.e.: 32 bits, so n = 2°7 - (32/8) = 2°% bytes = 16 GigaBytes

o Standard FFT requires more than 7 field elements of memory

 And in-place FFT algorithms require more time
 Memory locality: butterfly-like memory access causes cache misses

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits

1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness
* |nstead of sending “long" polynomials, can send “succinct” evaluations

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness
* |nstead of sending “long" polynomials, can send “succinct” evaluations
2. “Out of bounds” evaluation:

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness

* |nstead of sending “long" polynomials, can send “succinct” evaluations
2. “Out of bounds” evaluation:

« While the length of the input vector is /N, the polynomial can be evaluated
on |[F| > N points

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness

* |nstead of sending “long" polynomials, can send “succinct” evaluations
2. “Out of bounds” evaluation:

« While the length of the input vector is /N, the polynomial can be evaluated
on |[F| > N points
* This gives one huge freedom in designing more efficient protocols

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness

* |nstead of sending “long" polynomials, can send “succinct” evaluations
2. “Out of bounds” evaluation:

« While the length of the input vector is /N, the polynomial can be evaluated
on |[F| > N points
* This gives one huge freedom in designing more efficient protocols
 We will see later that the best “non-P“lIOP for Zero Check is far from efficient

Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness

* |nstead of sending “long" polynomials, can send “succinct” evaluations
2. “Out of bounds” evaluation:

« While the length of the input vector is /N, the polynomial can be evaluated
on |[F| > N points
* This gives one huge freedom in designing more efficient protocols

e \We will see later that the best “non-P“lOP for Zero Check is far from efficient
* Trade-off: in “non-P“|OPs, one can instantiate crypto more efficiently

What Did We Miss?

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4
* Verifier: constant number of field operations

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4

* Verifier: constant number of field operations
* One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4

* Verifier: constant number of field operations

* One more seminar: implementing the oracle by using KZG, an elliptic-curve
based polynomial commitment scheme
 Adds to costs

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4
* Verifier: constant number of field operations

One more seminar: implementing the oracle by using KZG, an elliptic-curve
based polynomial commitment scheme
 Adds to costs

* Prover: O(n) e.c. group operations, each group op > 256 field operations

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4
* Verifier: constant number of field operations
* One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
 Adds to costs

* Prover: O(n) e.c. group operations, each group op > 256 field operations
* Verifier: constant number of group operations

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4
* Verifier: constant number of field operations
* One more seminar: implementing the oracle by using KZG, an elliptic-curve

based polynomial commitment scheme
 Adds to costs

* Prover: O(n) e.c. group operations, each group op > 256 field operations
* Verifier: constant number of group operations
* Crypto part is costly!

What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4
* Verifier: constant number of field operations

* One more seminar: implementing the oracle by using KZG, an elliptic-curve
based polynomial commitment scheme
 Adds to costs

* Prover: O(n) e.c. group operations, each group op > 256 field operations
* Verifier: constant number of group operations
* Crypto part is costly!

 One more seminar: Fiat-Shamir (how to make it non-interactive)

Way Forward: Efficiency

A very short list

 Described techniques + extra seminars:

Way Forward: Efficiency

A very short list

 Described techniques + extra seminars:
* An ideal-for-verifier solution, but slow for the prover

Way Forward: Efficiency

A very short list

 Described techniques + extra seminars:
* An ideal-for-verifier solution, but slow for the prover
* Crypto is slow

Way Forward: Efficiency

A very short list

 Described techniques + extra seminars:
* An ideal-for-verifier solution, but slow for the prover
* Crypto is slow
e FFT is slow

Way Forward: Efficiency

A very short list

 Described techniques + extra seminars:

* An ideal-for-verifier solution, but slow for the prover
* Crypto is slow

e FFT is slow
* Converting arbitrary computation to finite field ops and circuits is slow

Way Forward: Efficiency

A very short list

 Described technigues + extra seminars:

* An ideal-for-verifier solution, but slow for the prover

* Crypto is slow

e FFT is slow

* Converting arbitrary computation to finite field ops and circuits is slow
* Univariate polynomials => multilinear polynomials: no need to interpolate

Way Forward: Efficiency

A very short list

 Described techniques + extra seminars:

* An ideal-for-verifier solution, but slow for the prover

* Crypto is slow

* FFT is slow

* Converting arbitrary computation to finite field ops and circuits is slow
* Univariate polynomials => multilinear polynomials: no need to interpolate
 GKR protocol => need to cryptographically commit to less values

Way Forward: Efficiency

A very short list

 Described technigues + extra seminars:
* An ideal-for-verifier solution, but slow for the prover
* Crypto is slow
* FFT is slow
* Converting arbitrary computation to finite field ops and circuits is slow
* Univariate polynomials => multilinear polynomials: no need to interpolate
 GKR protocol => need to cryptographically commit to less values
* Lookups => store valid gate |I/Os in a table, prove all gate |/Os are in that table

Way Forward: Efficiency

A very short list

 Described technigues + extra seminars:

* An ideal-for-verifier solution, but slow for the prover

* Crypto is slow

* FFT is slow

* Converting arbitrary computation to finite field ops and circuits is slow
* Univariate polynomials => multilinear polynomials: no need to interpolate
 GKR protocol => need to cryptographically commit to less values
* Lookups => store valid gate |I/Os in a table, prove all gate |/Os are in that table
* Folding => fold inputs and witnesses together before doing an operation

Way Forward: Efficiency

A very short list

 Described technigues + extra seminars:

* An ideal-for-verifier solution, but slow for the prover

* Crypto is slow

e FFT is slow

* Converting arbitrary computation to finite field ops and circuits is slow
* Univariate polynomials => multilinear polynomials: no need to interpolate
 GKR protocol => need to cryptographically commit to less values
* Lookups => store valid gate |I/Os in a table, prove all gate |/Os are in that table
* Folding => fold inputs and witnesses together before doing an operation
 Code&hash-based => using any fields, hash is fast, post-quantum

Way Forward: Security

A very short list

* More stringent security notions

Way Forward: Security

A very short list

* More stringent security notions
* Security in environments, where adversary sees arbitrary communication?

Way Forward: Security

A very short list

* More stringent security notions
* Security in environments, where adversary sees arbitrary communication?
 \Weaker cryptographic assumptions

Way Forward: Security

A very short list

* More stringent security notions

* Security in environments, where adversary sees arbitrary communication?
 \Weaker cryptographic assumptions

* Weaker elliptic-curve assumptions?

Way Forward: Security

A very short list

* More stringent security notions

* Security in environments, where adversary sees arbitrary communication?
 \Weaker cryptographic assumptions

* Weaker elliptic-curve assumptions?

* Post-quantum?

Way Forward: Security

A very short list

* More stringent security notions

* Security in environments, where adversary sees arbitrary communication?
 \Weaker cryptographic assumptions

* Weaker elliptic-curve assumptions?

* Post-quantum?

* |t was just found in 2025 that even Fiat-Shamir is not secure in the case of
actually used protocols

Way Forward: Security

A very short list

* More stringent security notions

* Security in environments, where adversary sees arbitrary communication?
 \Weaker cryptographic assumptions

* Weaker elliptic-curve assumptions?

* Post-quantum?

* |t was just found in 2025 that even Fiat-Shamir is not secure in the case of
actually used protocols

 Formal verification and automated security proofs

Way Forward: Applications

A very short list

« Make better ZK for diverse applications

Way Forward: Applications

A very short list

« Make better ZK for diverse applications
* Big right now:

Way Forward: Applications

A very short list

« Make better ZK for diverse applications
* Big right now:
e |2 blockchain, zkRollup

Way Forward: Applications

A very short list

« Make better ZK for diverse applications
* Big right now:

e |2 blockchain, zkRollup

e zkVM

Way Forward: Applications

A very short list

« Make better ZK for diverse applications
* Big right now:

e |2 blockchain, zkRollup

e zkVM

e zkML

Questions?

&

-

Here's a ZK memegs

Important References

 (FFT) James W. Cooley, John W. Tukey: An algorithm for the machine
calculation of complex Fourier series (1965)
» (Classic algorithm, many brilliant presentations, including on YouTube
e (Good book on polynomial algorithms) Joachim von zur Gathen, Jurgen

Gerhard: Modern Computer Algebra (3. ed.). Cambridge University
Press 2013

* PIOP:
 Benedikt Bunz, Ben Fisch, Alan Szepieniec. Transparent SNARKSs from
DARK compilers (2020)
* Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah

Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal
and Updatable SRS (2020)

