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Up To Now

* We explored the current high-level landscape of zk-SNARKs
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Today’s Seminar

« Common IR: arithmetic circuits + low-degree extensions
 Low-degree extensions = interpolating polynomials
* We will explain interpolation, omit a.c. (hot enough time)

 Simplest possible PIOP: Zero Check

 More complicated PIOP: Product Check

o Efficiency of product check
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Mathematical Setting

- Fis a finite field of prime order |[F| < 2°°°
» Prime order: F = Z , = {0,...,p — 1} with modular arithmetic

* Using smaller finite fields is possible
* (Given setting is easiest to explain, and needed when using elliptic curves
 Small field can cause problems: special-soundness, knowledge error
* Currently, we use univariate polynomials
» Alternative: multilinear polynomials // not this time

» Notation [-_, | X, [, [X|: univariate polynomials over [- of degree < n, < n

e |nput sizen > 224, companies are pushing for n > 28
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Reminder: FFT (NTT)

. FFT = multipoint evaluation: f(X) = Zz:ol X)) = (flwy), ..., f(w,_1))
. Inverse FFT = interpolation: (f(w), ...,f(w,_ ;) — [(X) = Z;:Ol 1(X)
e f(X) « Z?:O f"?(X) // £(X) are Lagrange polynomials

. Fis “FFT-friendly”: 2°% | (|F| — 1)
. Exists H = (w) = {@': i € [0,n — 1]}: mult. subgroup of FF* of order n

. FFT f(X) = 2::01 f(X) — (@), ...,@" ) in O(n log n) field ops
. Interpolation (f(@"), ..., @) = fIX) = 2::01 fX) in O(nlogn) f.o.

e => almost all univariate PIOP based SNARKs use such fields
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give some guarantees,

X,w=a¢&€[" _
fiX) =Enci(a) e F_ [X] like deg(f) < n

Accept/reject
based on

W randomizers and
. queried evaluations
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First PIOP: Zero Check

 Witness: vectora € [H*

* Any vector somewhere in the middle of calculations...
* \ector of wire values of a circuit

 "Public input": oracletoa € ["

» Goal: The prover aims to convice the verifiera = () is zero vector

» Formally: prove (x,w) € X, for £y := {(M,a) : Enc(a) c BAa =0}
 However, we have PIOP, so oracle contains a polynomial
* We will explain that next...
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Zero Check

Motivation

o Zero Check is a very basic check

* Underlies essentially anything else
« Example:a=b<a—-—b =0

cea+b=cca+b—-—-c=0
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Polynomial View of Zero Check

» Part of Intermediate Representatn: interpret a = () as polynomial constraint
» Enc:mapa € [F"to a(X) € [_,_[X], its interpolating polynomial
. Vie[1n].d(@w™) =a,
» Enc and its inverse (Enc:_1 = FF 1) are bijective, efficiently computable
. Zero check:a = 0iff A(w'™") = O foralli € [1,n]
- If a(X) € [_,_,[X], the latter holds iff a(X) = 0
» Zero Check with oracles for [, _[X| is really trivial

« Assuming the oracle guarantees the polynomial has "low degree” <n — 1



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0
 How to do it efficiently?



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?
 What do we mean by “efficiently”?



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?
 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending d(X) to verifier is not efficient



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending a(X) to verifier is not efficient
» Hint 1: we can query the values of d(X) at any location



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending d(X) to verifier is not efficient

» Hint 1: we can query the values of d(X) at any location
 Hint 2: the verifier can toss random coins



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending d(X) to verifier is not efficient

» Hint 1: we can query the values of d(X) at any location
 Hint 2: the verifier can toss random coins

» Idea . :testthat a(r) = O for random r sampled by the verifier



Making Polynomial Tests Succinct

 Recall: verifier needs to test a(X) = 0

 How to do it efficiently?

 What do we mean by “efficiently”?
 Short argument: Prover sends less information than the whole polynomial
» Efficient verifier: V does less work than checking each coefficient is O

» We need to come up with some efficient test of the fact a(X) = 0 &
» Sending a(X) to verifier is not efficient

» Hint 1: we can query the values of d(X) at any location
 Hint 2: the verifier can toss random coins

» Idea . :test that d(r) = O for random r sampled by the verifier

Why does this idea work?
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Schwartz-Zippel Lemma

- Lemma. Let /(X) € [, [X] be a non-zero polynomial of degree n > 0. Let r «<—¢ [
be sampled uniformly at random. The probability that /() = O is at most n/ | [

 Proof: Straightforward since f(X) has at most 7 roots
» Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of [-

» Lemma (Schwartz-Zippel). Let /(X) € [F[ X, ..., X | be a non-zero polynomial of
total degree n > (. Let S be a finite subset of [. Let Fls eoes By < S be sampled

uniformly at random. Then the probability that (7, ..., r, ) = Ois at most n/|S|.

e See https://en.wikipedia.org/wiki/Schwartz-Zippel lemma for a proof

o Schwartz-Zippel is hugely important in constructing efficient zk-SNARKs

* We mostly just use the first lemma (but still call it Schwartz-Zippel)
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« Degree mantra: if /(X) # 0O then ol
f(r) # 0 with “high” probability

» Schwartz-Zippel is extremely useful tool

e Intuition why so useful: B

- If f(X) € [_,[X]|and g(X) € [, [X] differ at a single point, they differ on
an overwhelming faction of points of |-

* Thus, If prover cheats even at one point, the verifier can discover the
cheating (w.h.p.), querying a random point of the polynomial

e “Smears" around the error — akin to error-correcting codes
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“Trivial” Zero Check PIOP

n

X=g,w=a € [

Note: the goal of the protocol is to check a = ()

This protocol makes little sense if nothing about a is given
as an input to the protocol // what exactly is = (?
Solution: an oracle [[a(X)]] is a part of the input

R ={x,w): x=[dX)]Aw=FFT@aX)) Aw=20}
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“Trivial” Zero Check PIOP

x—[[a(X)]] w=a=0€l

Zero Check

a < a(r)
—’

R ={x,w): x=[dX)J]Aw=FFT(aX)) Aw=0)}
* In general, PIOP is a proof of knowledge of knowing the

contents of the oracles that satisfy some relation

* |n zk-SNARKSs, when replacing oracles with commitments,
we get a proof of knowledge of knowing the contents of
the commitments that satisfy some relation
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e (5%)16x slowdown is not so bad? // At least n ops is needed by prover!
 But it’s in field ops (and we have a 256-bit field)

« Memory consumption: at least n = 232 field elements
» big f.e.: 256 bits, so n = 2° - (256/8) = 2°/ bytes = 128 GigaBytes
. small f.e.: 32 bits, so n = 2°7 - (32/8) = 2°% bytes = 16 GigaBytes

o Standard FFT requires more than 7 field elements of memory

 And in-place FFT algorithms require more time
 Memory locality: butterfly-like memory access causes cache misses
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Why Polynomial |IOPs?

« Compared to “non-P*“lOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
* |n general, Schwartz-Zippel is the main reason one can get succinctness

* |nstead of sending “long" polynomials, can send “succinct” evaluations
2. “Out of bounds” evaluation:

« While the length of the input vector is /N, the polynomial can be evaluated
on |[F| > N points
* This gives one huge freedom in designing more efficient protocols

e \We will see later that the best “non-P“lOP for Zero Check is far from efficient
* Trade-off: in “non-P“|OPs, one can instantiate crypto more efficiently
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What Did We Miss?

* |n two more seminars, we could describe how to construct a PIOP to very an
arbitrary arithmetic circuit with given complexity + prove security

* Prover: a few FFTs + polynomial multiplications of size n > 4
* Verifier: constant number of field operations

* One more seminar: implementing the oracle by using KZG, an elliptic-curve
based polynomial commitment scheme
 Adds to costs

* Prover: O(n) e.c. group operations, each group op > 256 field operations
* Verifier: constant number of group operations
* Crypto part is costly!

 One more seminar: Fiat-Shamir (how to make it non-interactive)
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A very short list

 Described technigues + extra seminars:

* An ideal-for-verifier solution, but slow for the prover

* Crypto is slow

e FFT is slow

* Converting arbitrary computation to finite field ops and circuits is slow
* Univariate polynomials => multilinear polynomials: no need to interpolate
 GKR protocol => need to cryptographically commit to less values
* Lookups => store valid gate |I/Os in a table, prove all gate |/Os are in that table
* Folding => fold inputs and witnesses together before doing an operation
 Code&hash-based => using any fields, hash is fast, post-quantum
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Way Forward: Security

A very short list

* More stringent security notions

* Security in environments, where adversary sees arbitrary communication?
 \Weaker cryptographic assumptions

* Weaker elliptic-curve assumptions?

* Post-quantum?

* |t was just found in 2025 that even Fiat-Shamir is not secure in the case of
actually used protocols

 Formal verification and automated security proofs
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Way Forward: Applications

A very short list

« Make better ZK for diverse applications
* Big right now:

e |2 blockchain, zkRollup

e zkVM

e zkML



Questions?

&

-

Here's a ZK memegs




Important References

 (FFT) James W. Cooley, John W. Tukey: An algorithm for the machine
calculation of complex Fourier series (1965)
» (Classic algorithm, many brilliant presentations, including on YouTube
e (Good book on polynomial algorithms) Joachim von zur Gathen, Jurgen

Gerhard: Modern Computer Algebra (3. ed.). Cambridge University
Press 2013

* PIOP:
 Benedikt Bunz, Ben Fisch, Alan Szepieniec. Transparent SNARKSs from
DARK compilers (2020)
* Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah

Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal
and Updatable SRS (2020)



