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Today’s Seminar

• Common IR: arithmetic circuits + low-degree extensions

• Low-degree extensions = interpolating polynomials

• We will explain interpolation, omit a.c. (not enough time)

• Simplest possible PIOP: Zero Check

• More complicated PIOP: Product Check

• Efficiency of product check
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Mathematical Setting

•  is a finite field of prime order 𝔽 |𝔽 | ≤ 2256

• Prime order:  with modular arithmetic𝔽 = ℤp = {0,…, p − 1}
• Using smaller finite fields is possible
• Given setting is easiest to explain, and needed when using elliptic curves
• Small field can cause problems: special-soundness, knowledge error

• Currently, we use univariate polynomials
• Alternative: multilinear polynomials // not this time

• Notation , : univariate polynomials over  of degree ,𝔽≤n[X] 𝔽≤n[X] 𝔽 ≤ n < n
• Input size , companies are pushing for n ≥ 224 n ≥ 228
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i=0 fi(X) ↦ ( f(ω0), …, f(ωn−1))

• Inverse FFT = interpolation: ( f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X)

•  //  are Lagrange polynomialsf(X) ← ∑n
i=0 f(ωi)ℓi(X) ℓi(X)

•  is “FFT-friendly”: 𝔽 232 ∣ ( |𝔽 | − 1)
• Exists : mult. subgroup of  of order ℍ = ⟨ω⟩ = {ωi : i ∈ [0,n − 1]} 𝔽* n
• FFT  in  field opsf(X) = ∑n−1

i=0 fi(X) ↦ ( f(ω0), …, f(ωn−1)) O(n log n)

• Interpolation  in  f.o.( f(ω0), …, f(ωn−1)) ↦ f(X) = ∑n−1
i=0 fi(X) O(n log n)

• => almost all univariate PIOP based SNARKs use such fields
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Reminder: Polynomial IOP
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

𝗑, 𝗐 = a ∈ 𝔽n
Oracle is trusted to 

give some guarantees, 
like deg( fi) ≤ n
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• Witness: vector a ∈ 𝔽n

• Any vector somewhere in the middle of calculations…
• Vector of wire values of a circuit

• "Public input": oracle to a ∈ 𝔽n

• Goal: The prover aims to convice the verifier  is zero vectora = 0n

• Formally: prove  for (𝗑, 𝗐) ∈ ℛ0 ℛ0 := {(◼, a) : 𝖤𝗇𝖼(a) ∈ ◼ ∧ a = 0n}
• However, we have PIOP, so oracle contains a polynomial
• We will explain that next…
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Zero Check

• Zero Check is a very basic check

• Underlies essentially anything else

• Example: a = b ⇔ a − b = 0

• a + b = c ⇔ a + b − c = 0

Motivation
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Polynomial View of Zero Check

• Part of Intermediate Representatn: interpret  as polynomial constrainta = 0
• : map  to , its interpolating polynomial𝖤𝗇𝖼 a ∈ 𝔽n ̂a(X) ∈ 𝔽≤n−1[X]
• ∀i ∈ [1,n] . ̂a(ωi−1) = ai

•  and its inverse ( ) are bijective, efficiently computable𝖤𝗇𝖼 𝖤𝗇𝖼−1 = 𝖥𝖥𝖳
• Zero check:  iff  for all a = 0 ̂a(ωi−1) = 0 i ∈ [1,n]
• If , the latter holds iff ̂a(X) ∈ 𝔽≤n−1[X] ̂a(X) = 0

• Zero Check with oracles for  is really trivial𝔽≤n−1[X]
• Assuming the oracle guarantees the polynomial has "low degree” ≤ n − 1
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Making Polynomial Tests Succinct

• Recall: verifier needs to test ̂a(X) = 0
• How to do it efficiently?
• What do we mean by “efficiently”?
• Short argument: Prover sends less information than the whole polynomial
• Efficient verifier: V does less work than checking each coefficient is 0

• We need to come up with some efficient test of the fact  🤔̂a(X) = 0
• Sending  to verifier is not efficient̂a(X)
• Hint 1: we can query the values of  at any location̂a(X)
• Hint 2: the verifier can toss random coins
• Idea 💡: test that  for random  sampled by the verifier̂a(r) = 0 r

Why does this idea work?



Schwartz-Zippel Lemma

• Lemma. Let  be a non-zero polynomial of degree . Let  
be sampled uniformly at random. The probability that  is at most 

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma


Schwartz-Zippel Lemma

• Lemma. Let  be a non-zero polynomial of degree . Let  
be sampled uniformly at random. The probability that  is at most 

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since  has at most  rootsf(X) n

Low-degree polynomials 
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma


Schwartz-Zippel Lemma

• Lemma. Let  be a non-zero polynomial of degree . Let  
be sampled uniformly at random. The probability that  is at most 

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since  has at most  rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽

Low-degree polynomials 
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma


Schwartz-Zippel Lemma

• Lemma. Let  be a non-zero polynomial of degree . Let  
be sampled uniformly at random. The probability that  is at most 

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since  has at most  rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽
• Lemma (Schwartz-Zippel). Let  be a non-zero polynomial of 

total degree . Let  be a finite subset of . Let  be sampled 
uniformly at random. Then the probability that  is at most .

f(X) ∈ 𝔽[X1, …, Xm]
n ≥ 0 S 𝔽 r1, …, rm ←$ S

f(r1, …, rm) = 0 n/ |S |

Low-degree polynomials 
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma


Schwartz-Zippel Lemma

• Lemma. Let  be a non-zero polynomial of degree . Let  
be sampled uniformly at random. The probability that  is at most 

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since  has at most  rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽
• Lemma (Schwartz-Zippel). Let  be a non-zero polynomial of 

total degree . Let  be a finite subset of . Let  be sampled 
uniformly at random. Then the probability that  is at most .

f(X) ∈ 𝔽[X1, …, Xm]
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be sampled uniformly at random. The probability that  is at most 

f(X) ∈ 𝔽≤n[X] n ≥ 0 r ←$ 𝔽
f(r) = 0 n/ |𝔽 |

• Proof: Straightforward since  has at most  rootsf(X) n

• Schwartz-Zippel lemma generalises this to multivariate poly-s and subsets of 𝔽
• Lemma (Schwartz-Zippel). Let  be a non-zero polynomial of 

total degree . Let  be a finite subset of . Let  be sampled 
uniformly at random. Then the probability that  is at most .

f(X) ∈ 𝔽[X1, …, Xm]
n ≥ 0 S 𝔽 r1, …, rm ←$ S

f(r1, …, rm) = 0 n/ |S |
• See https://en.wikipedia.org/wiki/Schwartz-Zippel_lemma for a proof

• Schwartz-Zippel is hugely important in constructing efficient zk-SNARKs

• We mostly just use the first lemma (but still call it Schwartz-Zippel)

Low-degree polynomials 
don’t have too many roots

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma
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On Schwartz-Zippel

• Degree mantra: if  then 
 with “high” probability

f(X) ≠ 0
f(r) ≠ 0

• Schwartz-Zippel is extremely useful tool
• Intuition why so useful:

• If  and  differ at a single point, they differ on 
an overwhelming faction of points of 

f(X) ∈ 𝔽≤n[X] g(X) ∈ 𝔽≤n[X]
𝔽

• Thus, if prover cheats even at one point, the verifier can discover the 
cheating (w.h.p.), querying a random point of the polynomial

• “Smears" around the error — akin to error-correcting codes
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r ←$ 𝔽
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“Trivial” Zero Check PIOP
𝗑 = ∅, 𝗐 = a ∈ 𝔽n

Check ā = 0

r ←$ 𝔽

ā ← ̂a(r)

̂a(X)
 ≤ n − 1

• Note: the goal of the protocol is to check 

• This protocol makes little sense if nothing about  is given 

as an input to the protocol // what exactly is = ?

• Solution: an oracle  is a part of the input

•

a = 0
a

0
[[ ̂a(X)]]

ℛ = {(𝗑, 𝗐) : 𝗑 = [[ ̂a(X)]] ∧ 𝗐 = 𝖥𝖥𝖳( ̂a(X)) ∧ 𝗐 = 0}
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“Trivial” Zero Check PIOP
, 𝗑 = [[ ̂a(X)]] 𝗐 = a = 0 ∈ 𝔽n

Check ā = 0

̂a(X)
 ≤ n − 1̂a(X) ← 𝖨𝗇𝗍𝖾𝗋𝗉(0) = 0

 𝗑 = [[ ̂a(X)]]

• 

• In general, PIOP is a proof of knowledge of knowing the 

contents of the oracles that satisfy some relation

• In zk-SNARKs, when replacing oracles with commitments, 

we get a proof of knowledge of knowing the contents of 
the commitments that satisfy some relation

ℛ = {(𝗑, 𝗐) : 𝗑 = [[ ̂a(X)]] ∧ 𝗐 = 𝖥𝖥𝖳( ̂a(X)) ∧ 𝗐 = 0}

r ←$ 𝔽

ā ← ̂a(r)
Zero Check
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“Virtual” Zero Check
• Zero check is always used as a subroutine (not as a separate goal)
• Simple example use cases:
• Boolean check: given input vector , check  a ∀i . ai(ai − 1) = 0
• Addition check: given input vectors , check a, b, c ∀i . ai + bi − ci = 0
• Product check: given input vectors , check a, b, c ∀i . aibi − ci = 0

• Above described zero check works with degree-  polynomials≤ (n − 1)
• Intermediate polyn’s in other checks can have higher degree than |ℍ | = n
• Product check has virtual oracle  of degree ̂a(X)b̂(X) − ̂c(X) ≤ 2n − 1
• Does not fit into -degree polynomial oracle!n

• Need to modify zero check to work with high-degree “virtual" oracles
• We will give a concrete example for “product check”
• In addition, adding ZK will increase the degree of “virtual" oracles
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• Defn. Vanishing polynomial of set : 𝒮 Z𝒮(X) := ∏s∈𝒮 (X − s)
•  for ,  otherwise; Zℍ(s) = 0 s ∈ S Zℍ(s) ≠ 0 deg(Z𝒮) = n

• Any polynomial  that vanishes on  has all  as rootsf(X) 𝒮 si ∈ 𝒮
• Since  for all   => (X − s) ∣ f(X) s ∈ 𝒮 Z𝒮(X) ∣ f(X)
• Assume . Use polynomial long division (Extended Euclidean) to write 

 for a polynomial  and remainder . 
f(s) = 0

f(X) = q(X)(X − s) + r q(X) r ∈ 𝔽
• Evaluating LHS and RHS at , we get , thus X = s f(s) = r r = 0
• Thus,  and f(X) = q(X)(X − s) (X − s) ∣ f(X)

• Lemma. If  and  vanishes on , then  
for some 

deg( f ) = N > n − 1 f(X) 𝒮 f(X) = q(X)Z𝒮(X)
q(X) ∈ 𝔽≤N−n[X]

•  is unique, minimal-degree, monic, non-zero poly that vanishes exactly on Z𝒮 𝒮
• Important fact:  since Zℍ(X) = ∏i (X − ωi−1) = Xn − 1 (ωi−1)n = ωn(i−1) = 1
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FFT: Memory Problems

• (5*)16x slowdown is not so bad? // At least  ops is needed by prover!n
• But it’s in field ops (and we have a 256-bit field)

• Memory consumption: at least  field elementsn = 232

• big f.e.: 256 bits, so  bytes = 128 GigaBytesn = 232 ⋅ (256/8) = 237

• small f.e.: 32 bits, so  bytes = 16 GigaBytesn = 232 ⋅ (32/8) = 234

• Standard FFT requires more than  field elements of memoryn
• And in-place FFT algorithms require more time

• Memory locality: butterfly-like memory access causes cache misses
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Why Polynomial IOPs?

• Compared to “non-P“IOPs, polynomial IOPs offer two related benefits
1. Schwartz-Zippel makes it possible to implement zero check efficiently
• In general, Schwartz-Zippel is the main reason one can get succinctness
• Instead of sending “long" polynomials, can send “succinct” evaluations

2. “Out of bounds” evaluation:
• While the length of the input vector is , the polynomial can be evaluated 

on  points
N

|𝔽 | ≫ N
• This gives one huge freedom in designing more efficient protocols

• We will see later that the best “non-P“IOP for Zero Check is far from efficient
• Trade-off: in “non-P“IOPs, one can instantiate crypto more efficiently
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• In two more seminars, we could describe how to construct a PIOP to very an 
arbitrary arithmetic circuit with given complexity + prove security
• Prover: a few FFTs + polynomial multiplications of size n ≥ 224

• Verifier: constant number of field operations
• One more seminar: implementing the oracle by using KZG, an elliptic-curve 

based polynomial commitment scheme
• Adds to costs
• Prover:  e.c. group operations, each group op  field operationsO(n) > 256
• Verifier: constant number of group operations
• Crypto part is costly!

• One more seminar: Fiat-Shamir (how to make it non-interactive)
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• Described techniques + extra seminars:
• An ideal-for-verifier solution, but slow for the prover
• Crypto is slow
• FFT is slow
• Converting arbitrary computation to finite field ops and circuits is slow

• Univariate polynomials => multilinear polynomials: no need to interpolate
• GKR protocol => need to cryptographically commit to less values
• Lookups => store valid gate I/Os in a table, prove all gate I/Os are in that table
• Folding => fold inputs and witnesses together before doing an operation
• Code&hash-based => using any fields, hash is fast, post-quantum
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• More stringent security notions
• Security in environments, where adversary sees arbitrary communication?

• Weaker cryptographic assumptions
• Weaker elliptic-curve assumptions?
• Post-quantum?

• It was just found in 2025 that even Fiat-Shamir is not secure in the case of 
actually used protocols

• Formal verification and automated security proofs
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Way Forward: Applications
A very short list

• Make better ZK for diverse applications
• Big right now:
• L2 blockchain, zkRollup
• zkVM
• zkML



Questions?



Important References
• (FFT) James W. Cooley, John W. Tukey: An algorithm for the machine 

calculation of complex Fourier series (1965)

• Classic algorithm, many brilliant presentations, including on YouTube


• (Good book on polynomial algorithms) Joachim von zur Gathen, Jürgen 
Gerhard: Modern Computer Algebra (3. ed.). Cambridge University 
Press 2013


• PIOP:

• Benedikt Bünz, Ben Fisch, Alan Szepieniec. Transparent SNARKs from 

DARK compilers (2020)

• Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah 

Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal 
and Updatable SRS (2020)


