
Helger Lipmaa, April, 2025

Zero-Knowledge Proofs And
ZK-SNARKs
Foundations Seminar

Brief Introduction

• Introduction to zero-knowledge and zk-SNARKs

Brief Introduction

• Introduction to zero-knowledge and zk-SNARKs

• Goal: introduction, trying to sell the hype, collaboration

Brief Introduction

• Introduction to zero-knowledge and zk-SNARKs

• Goal: introduction, trying to sell the hype, collaboration

• Give an up-to-date overview of the area

Brief Introduction

• Introduction to zero-knowledge and zk-SNARKs

• Goal: introduction, trying to sell the hype, collaboration

• Give an up-to-date overview of the area

• ZK field is wide, and there is a lot of collaborations possible

Brief Introduction

• Introduction to zero-knowledge and zk-SNARKs

• Goal: introduction, trying to sell the hype, collaboration

• Give an up-to-date overview of the area

• ZK field is wide, and there is a lot of collaborations possible

• Coding theory, ML, formal verification, …

ZK-SNARKs: Motivations

Motivation: Verifiable Computation

Motivation: Verifiable Computation
Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗒 ← f(𝗑, 𝗐)
𝗑, f

Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗒 ← f(𝗑, 𝗐)
𝗑, f

Thank you! Here’s your $1000

Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗒 ← f(𝗑, 𝗐)
𝗑, f

Thank you! Here’s your $1000

I don’t trust this guy! Is the
output really correct or I

was scammed?

Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗒 ← f(𝗑, 𝗐)
𝗑, f

Thank you! Here’s your $1000

I don’t trust this guy! I don’t
want the computation to

leak my private data
I don’t trust this guy! Is the

output really correct or I
was scammed?

Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗒 ← f(𝗑, 𝗐)
𝗑, f

Thank you! Here’s your $1000

I don’t trust this guy! I don’t
want the computation to

leak my private data

I don’t trust this guy! Is the
output really correct or I

was scammed?

• The whole currently popular ZK field could
also be called “verifiable computation” since
that is the driving application

• ZK is stuck as the “sexy” name

• ZK has other, more classical applications, like

authentication, that currently get less attention

• Less money ☹…

Solution: zk-SNARK

Solution: zk-SNARK
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Solution: zk-SNARK
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

Solution: zk-SNARK
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Solution: zk-SNARK
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

Solution: zk-SNARK
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

Proof can be interactive:

• Consist of several message back and forth

Security
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts honest prover

Security
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts honest prover
• Knowledge Soundness: if honest verifier accepts, prover “knows" 𝗐

Security
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts honest prover
• Knowledge Soundness: if honest verifier accepts, prover “knows" 𝗐
• Proof = knowledge-sound even if prover is omnipotent

Security
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts honest prover
• Knowledge Soundness: if honest verifier accepts, prover “knows" 𝗐
• Proof = knowledge-sound even if prover is omnipotent
• Argument = knowledge-sound only against polynomial-time provers

Security
Computation:

Public input (statement)

Private input (witness)

f
𝗑

𝗐

Computation:

Public input (statement)

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts honest prover
• Knowledge Soundness: if honest verifier accepts, prover “knows" 𝗐
• Proof = knowledge-sound even if prover is omnipotent
• Argument = knowledge-sound only against polynomial-time provers

• Zero-Knowledge: nothing about the private input of honest prover is leaked

Efficiency

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗑, f
𝗒 ← f(𝗑, 𝗐)

Thank you! Here’s your $1000

Argument that π f(𝗑, 𝗐) = 𝗒

Efficiency

Private input: 𝗐

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑

𝗑, f
𝗒 ← f(𝗑, 𝗐)

Thank you! Here’s your $1000

If verification of a zk-SNARK takes as much time as
recomputing, the application is less interesting!

Argument that π f(𝗑, 𝗐) = 𝗒

The cloud still preserves her privacy

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description
• Ideally: constant or logarithmic in computation length n

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description
• Ideally: constant or logarithmic in computation length n

• Verification should be much faster than the computation

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description
• Ideally: constant or logarithmic in computation length n

• Verification should be much faster than the computation
• Ideally: constant or logarithmic

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description
• Ideally: constant or logarithmic in computation length n

• Verification should be much faster than the computation
• Ideally: constant or logarithmic

• Note: proofs cannot be succinct, but arguments can

Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description
• Ideally: constant or logarithmic in computation length n

• Verification should be much faster than the computation
• Ideally: constant or logarithmic

• Note: proofs cannot be succinct, but arguments can

• Scalability: verifying argument is significantly faster than recomputation

• Important in many applications

• even without privacy… — a lot of what is called ZK is actually not ZK but VC

Recall: Verifiable Computation
Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑
Private input: 𝗐

Recall: Verifiable Computation

𝗑, f
𝗒 ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts if prover knows such that

• Knowledge Soundness: if honest verifier accepts, prover knows

• Zero-Knowledge: nothing about is leaked

• Efficiency: verifying should be much faster than redoing the computation

𝗐 f(𝗑, 𝗐) = 𝗒
𝗐

𝗐
π

Computation : arbitrary computation of steps

Public input:

f ≤ 230

𝗑
Private input: 𝗐

State-of-the-Art

• Prover time ☹: up to 10000x overhead

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation
• Recent research improves on this — streaming zk-SNARKs

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation
• Recent research improves on this — streaming zk-SNARKs

• Verifier time: milliseconds for arbitrary computation

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation
• Recent research improves on this — streaming zk-SNARKs

• Verifier time: milliseconds for arbitrary computation
• Concrete numbers depend on the construction

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation
• Recent research improves on this — streaming zk-SNARKs

• Verifier time: milliseconds for arbitrary computation
• Concrete numbers depend on the construction
• There is often an explicit trade-off between prover’s and verifier’s time

State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation
• Recent research improves on this — streaming zk-SNARKs

• Verifier time: milliseconds for arbitrary computation
• Concrete numbers depend on the construction
• There is often an explicit trade-off between prover’s and verifier’s time
• Very active research topic — prover overhead decreases each year

This number might be outdated

Application:
Cryptocurrencies

Application:
Cryptocurrencies

Computation : computing transaction from public info

Public input: (public information on blockchain)

Private input:

• transaction amount, payer account, payee account, …

f 𝗒
𝗑
𝗐

Computation:

Public input:

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = 𝗒

• Completeness
• Knowledge Soundness

• Zero-Knowledge
• Efficiency

Application:
Cryptocurrencies

Computation : computing transaction from public info

Public input: (public information on blockchain)

Private input:

• transaction amount, payer account, payee account, …

f 𝗒
𝗑
𝗐

Computation:

Public input:

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = 𝗒

• Completeness
• Knowledge Soundness

• Zero-Knowledge
• Efficiency

• The main source of R&D at this moment

• Spending $50B on research can secure

$2T money

Application: zkML

Application: zkML
Computation : inference was correct

Public input: (public input)

Private input: (model)

f
𝗑
𝗐

Computation:

Public input:

f
𝗑

Or: model was trained correctly

Application: zkML
Computation : inference was correct

Public input: (public input)

Private input: (model)

f
𝗑
𝗐

Computation:

Public input:

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = 𝗒

Or: model was trained correctly

• Completeness
• Knowledge Soundness

• Zero-Knowledge
• Efficiency

Application: zkML
Computation : inference was correct

Public input: (public input)

Private input: (model)

f
𝗑
𝗐

Computation:

Public input:

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = 𝗒

Or: model was trained correctly

• Completeness
• Knowledge Soundness

• Zero-Knowledge
• Efficiency

• Fairness: the same
model was used in all
cases
• Property loans, …

Application: zkML
Computation : inference was correct

Public input: (public input)

Private input: (model)

f
𝗑
𝗐

Computation:

Public input:

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = 𝗒

Or: model was trained correctly

• Completeness
• Knowledge Soundness

• Zero-Knowledge
• Efficiency

• Fairness: the same
model was used in all
cases
• Property loans, …

• Collaboration questions:
• In which ML-related questions, ZK can

help?
• How does the low-level ML computation

look like, can it be made more “ZK-
friendly”?

Application: E-voting

Application: E-voting
Computation : tallying was correct

Public input: (all incoming signed encrypted ballots)

Private input: ; who voted for who

f
𝗑
𝗐

Computation:

Public input:

f
𝗑

true ← f(𝗑, 𝗐)

Argument that π f(𝗑, 𝗐) = true

• Completeness
• Knowledge Soundness

• Zero-Knowledge
• Efficiency

Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F

x2 = F(x1, w1)

Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F

x2 = F(x1, w1) x3 = F(x2, w2)

Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3)

Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)
• https://ethereum.org/en/developers/docs/evm/

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)
• https://ethereum.org/en/developers/docs/evm/

• Example application 2: RISC Zero (proving RISC V execution correctness)

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)
• https://ethereum.org/en/developers/docs/evm/

• Example application 2: RISC Zero (proving RISC V execution correctness)
• https://www.risczero.com/

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Current Machinery

The Current Machinery of ZK-SNARKs
Computation f

The Current Machinery of ZK-SNARKs

DSL

Intermediate RepresentationComputation f

The Current Machinery of ZK-SNARKs

DSL

Intermediate Representation

Cryptography

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Computation f

The Current Machinery of ZK-SNARKs

DSL

Intermediate Representation

Cryptography

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Computation f

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits
2. Formalise its verification as a few efficiently verifiable checks using a

suitable “proof system”

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits
2. Formalise its verification as a few efficiently verifiable checks using a

suitable “proof system”
• Crypto part:

Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits
2. Formalise its verification as a few efficiently verifiable checks using a

suitable “proof system”
• Crypto part:
• implement the checks

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

• Common solution 2: implement a RISC processor instruction set

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

• Common solution 2: implement a RISC processor instruction set
• Model much more efficient 😀

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

• Common solution 2: implement a RISC processor instruction set
• Model much more efficient 😀
• Adding verification more costly ☹ (many ops are global)

+ * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

• Common solution 2: implement a RISC processor instruction set
• Model much more efficient 😀
• Adding verification more costly ☹ (many ops are global)

• Verifying random memory access is costly, so many IRs avoid it + * +

+ *

*

x1 x2 x3 x4

y

Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

• Common solution 2: implement a RISC processor instruction set
• Model much more efficient 😀
• Adding verification more costly ☹ (many ops are global)

• Verifying random memory access is costly, so many IRs avoid it
• However, model is efficient without such access

+ * +

+ *

*

x1 x2 x3 x4

y

On Domain-Specific Languages

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages
• Optimization depends on IR; certain operations are “unexpectedly” costly

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages
• Optimization depends on IR; certain operations are “unexpectedly” costly

• DSLs change a lot, but are fun

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages
• Optimization depends on IR; certain operations are “unexpectedly” costly

• DSLs change a lot, but are fun
• Learn one: then you see how big the intermediate interpretations can be

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages
• Optimization depends on IR; certain operations are “unexpectedly” costly

• DSLs change a lot, but are fun
• Learn one: then you see how big the intermediate interpretations can be
• And how efficient a SNARK you need

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages
• Optimization depends on IR; certain operations are “unexpectedly” costly

• DSLs change a lot, but are fun
• Learn one: then you see how big the intermediate interpretations can be
• And how efficient a SNARK you need

• Importantly, you do not have to sit down and write an IR for your task

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR
• Many DSLs by now
• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …
• Each has their own limitations

• Different from general purpose languages:
• “Verification", not "computation" languages
• Optimization depends on IR; certain operations are “unexpectedly” costly

• DSLs change a lot, but are fun
• Learn one: then you see how big the intermediate interpretations can be
• And how efficient a SNARK you need

• Importantly, you do not have to sit down and write an IR for your task
• There are tools for it if you know a high-level programming language!

On Domain-Specific Languages

• The frontend DSL compiles source code to the chosen IR

• Many DSLs by now

• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …

• Each has their own limitations

• Different from general purpose languages:

• “Verification", not "computation" languages

• Optimization depends on IR; certain operations are “unexpectedly” costly

• DSLs change a lot, but are fun

• Learn one: then you see how big the intermediate interpretations can be

• And how efficient a SNARK you need

• Importantly, you do not have to sit down and write an IR for your task

• There are tools for it if you know a high-level programming language!

• Collaboration questions:
• How to compile high-

level code efficiently to
ZK IRs?

• How to formally verify
that compilation was
correct?

• Design etc of DSLs

Backend
Intermediate Representation (Polynomial) Interactive Oracle Proof

“Non-
cryptographic"
techniques

Backend
Intermediate Representation (Polynomial) Interactive Oracle Proof

“Non-
cryptographic"
techniques Cryptography

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Backend
Intermediate Representation (Polynomial) Interactive Oracle Proof

“Non-
cryptographic"
techniques Cryptography

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Usual Proof
𝗑, 𝗐 = a ∈ 𝔽n 𝗑

Usual Proof
𝗑, 𝗐 = a ∈ 𝔽n

a ∈ 𝔽n 𝗑

Usual Proof
𝗑, 𝗐 = a ∈ 𝔽n

a ∈ 𝔽n

Read every bit
Accept/reject

𝗑

Usual Proof
𝗑, 𝗐 = a ∈ 𝔽n

a ∈ 𝔽n

Read every bit
Accept/reject

: class of languages that have proofs
which can be verified in polynomial time
𝖭𝖯 𝗐

𝗑

Usual Proof
𝗑, 𝗐 = a ∈ 𝔽n

a ∈ 𝔽n

Read every bit
Accept/reject

Think of

Even prover time is impenetrable

We want verifier to be much faster than !

n = 230

n2 = 260

230

: class of languages that have proofs
which can be verified in polynomial time
𝖭𝖯 𝗐

𝗑

Probabilistically Checkable Proof (~1992)
𝗑, 𝗐 = a ∈ 𝔽n

Probabilistically Checkable Proof (~1992)
𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

Probabilistically Checkable Proof (~1992)
𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

i ∈ [1,ℓ(n)]
b[i]

V can toss random coins (not
secure if V is deterministic)

Probabilistically Checkable Proof (~1992)
𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

Accept/reject
based on queried bits

i ∈ [1,ℓ(n)]
b[i]

V can toss random coins (not
secure if V is deterministic)

Probabilistically Checkable Proof (~1992)
𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

Accept/reject
based on queried bits

i ∈ [1,ℓ(n)]
b[i]

Key insight: allowing randomness
makes it much more efficient to verify!

V can toss random coins (not
secure if V is deterministic)

PCP Theorem
𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

Accept/reject
based on queried bits

i ∈ [1,ℓ(n)]
b[i]

V can toss random coins (not
secure if V is deterministic)

 - class of languages where proofs can be
verified by using verifier’s random bits and queries

PCP theorem:

• Celebrated as one of the most central theorems in

complexity theory

𝖯𝖢𝖯[r(n), q(n)]
r(n) q(n)

𝖯𝖢𝖯[O(log n), O(1)] = 𝖭𝖯

PCP Theorem
𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

Accept/reject
based on queried bits

i ∈ [1,ℓ(n)]
b[i]

😭😭😭😭 Known PCPs are quite inefficient
for the prover (proof length)O(n log4 n)

V can toss random coins (not
secure if V is deterministic)

 - class of languages where proofs can be
verified by using verifier’s random bits and queries

PCP theorem:

• Celebrated as one of the most central theorems in

complexity theory

𝖯𝖢𝖯[r(n), q(n)]
r(n) q(n)

𝖯𝖢𝖯[O(log n), O(1)] = 𝖭𝖯

Interactive Oracle Proof (2016)
𝗑, 𝗐 = a ∈ 𝔽n

Interactive Oracle Proof (2016)
𝗑, 𝗐 = a ∈ 𝔽n

b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽

Random, unpredictable, independent
from previous messages

Interactive Oracle Proof (2016)
𝗑, 𝗐 = a ∈ 𝔽n

b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

Random, unpredictable, independent
from previous messages

Interactive Oracle Proof (2016)
𝗑, 𝗐 = a ∈ 𝔽n

b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

Random, unpredictable, independent
from previous messages

Interactive Oracle Proof (2016)
𝗑, 𝗐 = a ∈ 𝔽n

b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

Random, unpredictable, independent
from previous messages

Interactive Oracle Proof (2016)
b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

i, j
bj[i]

Random, unpredictable, independent
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

Interactive Oracle Proof (2016)
b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

Accept/reject
based on

randomizers and
queried bits

i, j
bj[i]

Random, unpredictable, independent
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

Interactive Oracle Proof (2016)
b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

Accept/reject
based on

randomizers and
queried bits

i, j
bj[i]

Key insight (1980+): allowing
interaction makes it much more
efficient to prove and verify

Random, unpredictable, independent
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

Accept/reject
based on

randomizers and
queried bits

Key insight (1980+): allowing
interaction makes it much more
efficient to prove and verify

Interactive Oracle Proof (2016)
b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

i, j
bj[i]

Random, unpredictable, independent
from previous messages

Key ideas:

• V can spot-check certain coordinates of the encodings

• For efficiency, need a tool to “smear" errors

• => Use error-correcting codes

𝗑, 𝗐 = a ∈ 𝔽n

Accept/reject
based on

randomizers and
queried bits

Key insight (1980+): allowing
interaction makes it much more
efficient to prove and verify

Interactive Oracle Proof (2016)
b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

i, j
bj[i]

Random, unpredictable, independent
from previous messages

Key ideas:

• V can spot-check certain coordinates of the encodings

• For efficiency, need a tool to “smear" errors

• => Use error-correcting codes

𝗑, 𝗐 = a ∈ 𝔽n

• Collaboration questions:
• Find good error-correcting codes
• Find out which codes are

needed…
• Give input to cryptographers

about known coding theory facts

Accept/reject
based on

randomizers and
queried evaluations

Polynomial Interactive Oracle Proof (2020)
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

Random, unpredictable, independent
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

Accept/reject
based on

randomizers and
queried evaluations

Polynomial Interactive Oracle Proof (2020)
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

Key insight (trade-off): allowing a
more powerful oracle makes IOP
more efficient but implementing
the oracle is more costly

Random, unpredictable, independent
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

 possible queries instead of just |𝔽 | i n

Accept/reject
based on

randomizers and
queried evaluations

Polynomial Interactive Oracle Proof (2020)
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

Key insight (trade-off): allowing a
more powerful oracle makes IOP
more efficient but implementing
the oracle is more costly

Random, unpredictable, independent
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

 possible queries instead of just |𝔽 | i nKey ideas:

• V can query polynomials at random points

• Since low-degree polynomials have few roots,

random evaluation = 0 polynomial = 0 w.h.p⟹

Insufficiency

• PIOPs are idealized protocols

Insufficiency

• PIOPs are idealized protocols

• You need to trust that the oracles function correctly

Insufficiency

• PIOPs are idealized protocols

• You need to trust that the oracles function correctly

• The next step in zk-SNARK design: instantiating the boxes

Insufficiency

• PIOPs are idealized protocols

• You need to trust that the oracles function correctly

• The next step in zk-SNARK design: instantiating the boxes

• Instantiating makes protocols less efficient

Insufficiency

• PIOPs are idealized protocols

• You need to trust that the oracles function correctly

• The next step in zk-SNARK design: instantiating the boxes

• Instantiating makes protocols less efficient

• … and also only computationally secure

Backend
(Polynomial) Interactive Oracle Proof

Backend
(Polynomial) Interactive Oracle Proof

Commitment

Interactive Protocols

Backend
(Polynomial) Interactive Oracle Proof

Commitment

Interactive Protocols

Fiat-Shamir

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Backend
(Polynomial) Interactive Oracle Proof

Commitment

Interactive Protocols

Fiat-Shamir

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

We will not
discuss FS today

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency
of the IOP and the VCS

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency
of the IOP and the VCS

• VCS gives most of the structural flavour
to resulting zk-SNARKs:

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency
of the IOP and the VCS

• VCS gives most of the structural flavour
to resulting zk-SNARKs:
• Security assumptions (post-quantum?)

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency
of the IOP and the VCS

• VCS gives most of the structural flavour
to resulting zk-SNARKs:
• Security assumptions (post-quantum?)
• Trusted parameters

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency
of the IOP and the VCS

• VCS gives most of the structural flavour
to resulting zk-SNARKs:
• Security assumptions (post-quantum?)
• Trusted parameters

• PCS: Real-life instantiation of the PIOP
black box

• Security definitions of PCS, PIOP are
chosen so that combining a secure PCS
with a secure PIOP results in a secure
zk-SNARK

• Efficiency depends both on the efficiency
of the PIOP and the PCS

• PCS gives most of the structural flavour
to resulting zk-SNARKs:

• Security assumptions (post-quantum?)

• Trusted parameters

Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP

black box
• Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency
of the IOP and the VCS

• VCS gives most of the structural flavour
to resulting zk-SNARKs:
• Security assumptions (post-quantum?)
• Trusted parameters

💡Security assumptions and trusted
parameters depend only on the VCS/PCS

• PCS: Real-life instantiation of the PIOP
black box

• Security definitions of PCS, PIOP are
chosen so that combining a secure PCS
with a secure PIOP results in a secure
zk-SNARK

• Efficiency depends both on the efficiency
of the PIOP and the PCS

• PCS gives most of the structural flavour
to resulting zk-SNARKs:

• Security assumptions (post-quantum?)

• Trusted parameters

Current Main "Cryptographic" Approaches

Assumption Post-
Quantum

Trusted
para-

meters

Prover
speed

Verifier speed Argument
length

Examples

Pairing-
based PCS +

PIOP

Various
pairing-based
(elliptic curve)
assumptions

No Yes
O(n log n)

heavy
operations

Small constant
number of heavy
operations (a few

milliseconds)

Very short

(<600 B for

any
computation)

Plonk, Marlin,
Groth16, Polymath,

Lunar, Basilisk,
Vampire, Spartan,

HyperPlonk,
BabySpartan, ….

Hash-based
VCS + IOP

A secure hash
function
(CRHF)

Yes Minimal
O(n log n)
or even

O(n) simple
operations

Large number of
simple operations

New schemes
(WHIR) have an
efficient verifier

Long (50
KB-500KB)

FRI, STIR,
WHIR,

Brakedown,
Binius, Orion,

Ligero,
BaseFold

Current Main "Cryptographic" Approaches

Assumption Post-
Quantum

Trusted
para-

meters

Prover
speed

Verifier speed Argument
length

Examples

Pairing-
based PCS +

PIOP

Various
pairing-based
(elliptic curve)
assumptions

No Yes
O(n log n)

heavy
operations

Small constant
number of heavy
operations (a few

milliseconds)

Very short

(<600 B for

any
computation)

Plonk, Marlin,
Groth16,

Polymath, Lunar,
Basilisk, Vampire,

Spartan,
HyperPlonk,

BabySpartan, ….

Hash-based
VCS + IOP

A secure hash
function
(CRHF)

Yes Minimal
O(n log n)
or even

O(n) simple
operations

Large number of
simple operations

New schemes
(WHIR) have an
efficient verifier

Long (50
KB-500KB)

FRI, STIR,
WHIR,

Brakedown,
Binius, Orion,

Ligero,
BaseFold

More efficient IOP
part, a lot of algebra

Current Main "Cryptographic" Approaches

Assumption Post-
Quantum

Trusted
para-

meters

Prover
speed

Verifier speed Argument
length

Examples

Pairing-
based PCS +

PIOP

Various
pairing-based
(elliptic curve)
assumptions

No Yes
O(n log n)

heavy
operations

Small constant
number of heavy
operations (a few

milliseconds)

Very short

(<600 B for

any
computation)

Plonk, Marlin,
Groth16,

Polymath, Lunar,
Basilisk, Vampire,

Spartan,
HyperPlonk,

BabySpartan, ….

Hash-based
VCS + IOP

A secure hash
function
(CRHF)

Yes Minimal
O(n log n)
or even

O(n) simple
operations

Large number of
simple operations

New schemes
(WHIR) have an
efficient verifier

Long (50
KB-500KB)

FRI, STIR,
WHIR,

Brakedown,
Binius, Orion,

Ligero,
BaseFold

More efficient IOP
part, a lot of algebra

More efficient CS part, no algebra at all

Current Main "Cryptographic" Approaches

Assumption Post-
Quantum

Trusted
para-

meters

Prover
speed

Verifier speed Argument
length

Examples

Pairing-
based PCS +

PIOP

Various
pairing-based
(elliptic curve)
assumptions

No Yes
O(n log n)

heavy
operations

Small constant
number of heavy
operations (a few

milliseconds)

Very short

(<600 B for

any
computation)

Plonk, Marlin,
Groth16,

Polymath, Lunar,
Basilisk, Vampire,

Spartan,
HyperPlonk,

BabySpartan, ….

Hash-based
VCS + IOP

A secure hash
function
(CRHF)

Yes Minimal
O(n log n)
or even

O(n) simple
operations

Large number of
simple operations

New schemes
(WHIR) have an
efficient verifier

Long (50
KB-500KB)

FRI, STIR,
WHIR,

Brakedown,
Binius, Orion,

Ligero,
BaseFold

More efficient IOP
part, a lot of algebra

More efficient CS part, no algebra at all

Other approaches exist but are currently more experimental (lattice-based, …)

Current Main "Cryptographic" Approaches

Assumption Post-
Quantum

Trusted
para-

meters

Prover
speed

Verifier speed Argument
length

Examples

Pairing-
based PCS +

PIOP

Various
pairing-based
(elliptic curve)
assumptions

No Yes
O(n log n)

heavy
operations

Small constant
number of heavy
operations (a few

milliseconds)

Very short

(<600 B for

any
computation)

Plonk, Marlin,
Groth16,

Polymath, Lunar,
Basilisk, Vampire,

Spartan,
HyperPlonk,

BabySpartan, ….

Hash-based
VCS + IOP

A secure hash
function
(CRHF)

Yes Minimal
O(n log n)
or even

O(n) simple
operations

Large number of
simple operations

New schemes
(WHIR) have an
efficient verifier

Long (50
KB-500KB)

FRI, STIR,
WHIR,

Brakedown,
Binius, Orion,

Ligero,
BaseFold

More efficient IOP
part, a lot of algebra

More efficient CS part, no algebra at all

Other approaches exist but are currently more experimental (lattice-based, …)
Inherent trade-off between efficiency and
trusted parameters/assumptions

Background Material

• ZK MOOC: https://zk-learning.org/

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available
• 2023 Spring: uptodate at that moment

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available
• 2023 Spring: uptodate at that moment
• Meant for non-cryptographers (but related background helps)

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available
• 2023 Spring: uptodate at that moment
• Meant for non-cryptographers (but related background helps)

• Alessandro Chiesa and Elon Yogev’s book:

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available
• 2023 Spring: uptodate at that moment
• Meant for non-cryptographers (but related background helps)

• Alessandro Chiesa and Elon Yogev’s book:
• https://snargsbook.org/

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available
• 2023 Spring: uptodate at that moment
• Meant for non-cryptographers (but related background helps)

• Alessandro Chiesa and Elon Yogev’s book:
• https://snargsbook.org/
• 2024, modern, and very technical

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• ZK MOOC: https://zk-learning.org/
• Top presenters
• 2023 Spring: uptodate at that moment
• More than 2000 people on MOOC’s Discord server (many from industry)

• Justin Thaler’s book:
• https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
• Freelly available
• 2023 Spring: uptodate at that moment
• Meant for non-cryptographers (but related background helps)

• Alessandro Chiesa and Elon Yogev’s book:
• https://snargsbook.org/
• 2024, modern, and very technical
• Specialized to cover hash-based zk-SNARKs and only their foundations

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

• MoonMath Manual: // background math for zk-SNARKs

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra
• Various algorithms for fast arithmetic, polynomials, …, ending with

factorisation

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra
• Various algorithms for fast arithmetic, polynomials, …, ending with

factorisation
• Relevant for this course: polynomial multiplication and division, FFT, …

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra
• Various algorithms for fast arithmetic, polynomials, …, ending with

factorisation
• Relevant for this course: polynomial multiplication and division, FFT, …

• Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra
• Various algorithms for fast arithmetic, polynomials, …, ending with

factorisation
• Relevant for this course: polynomial multiplication and division, FFT, …

• Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography
• If you need to know more about elliptic curves & pairings

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra
• Various algorithms for fast arithmetic, polynomials, …, ending with

factorisation
• Relevant for this course: polynomial multiplication and division, FFT, …

• Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography
• If you need to know more about elliptic curves & pairings

• ZK Podcast: https://zeroknowledge.fm/

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

• MoonMath Manual: // background math for zk-SNARKs
• https://leastauthority.com/community-matters/moonmath-manual/

• Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra
• Top book about efficient computer algebra
• Various algorithms for fast arithmetic, polynomials, …, ending with

factorisation
• Relevant for this course: polynomial multiplication and division, FFT, …

• Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography
• If you need to know more about elliptic curves & pairings

• ZK Podcast: https://zeroknowledge.fm/
• Often top researchers talking about the most recent work

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

Background Material

• Thousands of YouTube videos

Background Material

• Thousands of YouTube videos

• Just search for anything (for example, “GKR")

Background Material

• Thousands of YouTube videos

• Just search for anything (for example, “GKR")

• But ask me for who the good presenters are

Important References

• (Usual proofs:) Euclid. Elements (~300 BC)

• PCP:

• Sanjeev Arora, Shmuel Safra. Probabilistic checking of proofs: A new

characterization of NP (1998)

• Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy.

Proof verification and the hardness of approximation problems (1998)

• IOP:

• Eli Ben-Sasson, Alessandro Chiesa, Nicholas Spooner. Interactive Oracle

Proofs (2016)

• Omer Reingold, Guy N. Rothblum, Ron D. Rothblum. Constant-round

interactive proofs for delegating computation (2016)

Important References

• PIOP:

• Benedikt Bünz, Ben Fisch, Alan Szepieniec. Transparent SNARKs from

DARK compilers (2020)

• Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah

Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal
and Updatable SRS (2020)

• PCS:

• Aniket Kate, Gregory M. Zaverucha, Ian Goldberg. Constant-Size

Commitments to Polynomials and Their Applications (2010)

• (Definition of interactive protocols and ZK) Shafi Goldwasser, Silvio

Micali, Charles Rackoff: The Knowledge Complexity of Interactive Proof-
Systems. STOC 1985: 291-304

• Noir: https://noir-lang.org/

https://dblp.org/db/conf/stoc/stoc85.html#GoldwasserMR85
https://noir-lang.org/

