Zero-Knowledge Proofs And
ZK-SNARKs

Foundations Seminar

Helger Lipmaa, April, 2025

Brief Introduction

» Introduction to zero-knowledge and zk-SNARKS

Brief Introduction

» Introduction to zero-knowledge and zk-SNARKS

» Goal: introduction, trying to sell the hype, collaboration

Brief Introduction

» Introduction to zero-knowledge and zk-SNARKS
» Goal: introduction, trying to sell the hype, collaboration

» Give an up-to-date overview of the area

Brief Introduction

» Introduction to zero-knowledge and zk-SNARKS
» Goal: introduction, trying to sell the hype, collaboration
» Give an up-to-date overview of the area

» /K field is wide, and there is a lot of collaborations possible

Brief Introduction

» Introduction to zero-knowledge and zk-SNARKS
» Goal: introduction, trying to sell the hype, collaboration
» Give an up-to-date overview of the area
» /K field is wide, and there is a lot of collaborations possible

» Coding theory, ML, formal verification, ...

_—
%

WLl V)

o, SR OSSN I N T AL T K O T AT S O

. Ermey

o= mi';?\
—— o)s
m‘\a&‘__é :

PR ea R ”
ZXCONLGIIRONSsOneRet W '

Lrfete . g)

9y , ¥ ‘% 3 .

. ¢ a D

ST e
DT L i
e h

-
&£

AN Nt Py - b 3 :
A L) T i) . AN e
D N R O S S AR R N NN, l?;.\-,—}

©)

Ly

- 5 A
e NS

T SAD TNSTRNA I SSTEE I T SRIE S IR T
) T4
~ -
0 T —ag
&

Led X

e e
A

~ 3
X . R AN 3 — R

1. \)ﬂd;f&bﬂuhn.ﬁggn S o i G T OSSN DA RO « AN AT TITE SN
s 17 o A RO DD Syow WSTAT
=]

"
[N
% S TEl
- g N TR AT O T MG .Q...n-. “:
SR S LR s LT D R N N R, T A K L T R R R QR XX w&ﬂz.#
S ﬂm\ SRRTOC RTINS O esscty: { {0 § comrermooc o Tt | JJ
- A ¥l ercommsssnoresse—re C SV - SRR O L ST T T e T, T 6l) - A S s S ST S SR o= 4/4.3“ ‘N
A e N S T . L oA T e e AR P O Ny TG ST T AN N S T R S NN 2 RS P IOt RS I o Vo
B R o B 0 RS M e s o IRRERSE &
e e R e el B

R R R T T R S N R AT TP) SRS TS S AR

N S
B

IONS |

t

©
2

Mot

SNARKSs

VA C

Motivation: Verifiable Computation

Motivation: Verifiable Computation

Computation f arbitrary computation of < 2°Y steps
Public input: X

Motivation: Verifiable Computation

Computation f arbitrary computation of < 2°Y steps

| | Public input: X
Private input: w

Motivation: Verifiable Computation

Computation f arbitrary computation of < 2°Y steps

| | Public input: X
Private input: w

Motivation: Verifiable Computation
| | Public input: X

X, f
y < f(X, W)

Thank you! Here’s your $1000
4—

Motivation: Verifiable Computation

Computation f arbitrary computation of < 2°Y steps
| | Public input: X
Private input: w

Thank you! Here’s your $1000
4—

| don’t trust this guy! Is the

output really correct or |
was scammed?

Motivation: Verifiable Computation

Computation f arbitrary computation of < 2°Y steps
Public input: X

Private input: w

- I

Thank you! Here’s your $1000

| don’t trust this guy! | don’t _
| don’t trust this guy! Is the

want the computation to

leak my private data output really correct or |

was scammed?

Motivation: Verifiable Computation
| | Public input: X

X, f
y < f(X,w)
‘- The whole currently popular ZK field could

also be called “verifiable computation” since

- that is the driving application

want the com . 7K has other, more classical applications, like Iy correct or |
leak my priv - gythentication, that currently get less attention >@ammed?

» Less money ®...

Solution: zk-SNARK

Solution: zk-SNARK

Computation: f
Public input (statement) x
Private input (withess) w

Solution: zk-SNARK

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

Solution: zk-SNARK

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

Solution: zk-SNARK

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

Proof 7 that f(x,w) =y

Solution: zk-SNARK

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

Proof 7 that f(x,w) =y

Proof can be interactive:

* Consist of several message back and forth

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

L) Proof 7 that f(x,w) =y

 Completeness: honest verifier accepts honest prover

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

" Proof 7 that f(x,w) =y

 Completeness: honest verifier accepts honest prover
« Knowledge Soundness: if honest verifier accepts, prover “knows" w

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

" Proof 7 that f(x,w) =y

 Completeness: honest verifier accepts honest prover
« Knowledge Soundness: if honest verifier accepts, prover “knows" w

* Proof = knowledge-sound even if prover is omnipotent

Computation: f Computation: f

Public input (statement) x Public input (statement) x
Private input (withess) w

y < J(X, W)
Proof 7 that f(x,w) =y

 Completeness: honest verifier accepts honest prover
« Knowledge Soundness: if honest verifier accepts, prover “knows" w

* Proof = knowledge-sound even if prover is omnipotent
 Argument = knowledge-sound only against polynomial-time provers

Computation: f Computation: f

Public input (statement) x Public input (statement) x
Private input (withess) w

y < J(X, W)
Proof 7 that f(x,w) =y

 Completeness: honest verifier accepts honest prover
« Knowledge Soundness: if honest verifier accepts, prover “knows" w

* Proof = knowledge-sound even if prover is omnipotent

 Argument = knowledge-sound only against polynomial-time provers
 Zero-Knowledge: nothing about the private input of honest prover is leaked

Efficiency
Computation f: arbitrary computation of < 2°Y steps
| | Public input: X

X,.f

y < f(X, W)

Argument 7 that f(x, w) =y

Thank you! Here’s your $1000
4—

Efficiency

Computation f: arbitrary computation of < 2°Y steps
| | Public input: X
Private input: w

’) X,
y < f(X, W)

T (. >

Thank you! Here’s your $1000
4—

If verification of a zk-SNARK takes as much time as
recomputing, the application is less interesting!

The cloud still preserves her privacy

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments;

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments;
 Argument should be much shorter than the computation description

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments;
 Argument should be much shorter than the computation description

e |deally: constant or logarithmic in computation length n

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments;
 Argument should be much shorter than the computation description

e |deally: constant or logarithmic in computation length n
* \erification should be much faster than the computation

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments;
 Argument should be much shorter than the computation description

e |deally: constant or logarithmic in computation length n

* \erification should be much faster than the computation
* |deally: constant or logarithmic

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments;

 Argument should be much shorter than the computation description

e |deally: constant or logarithmic in computation length n
* \erification should be much faster than the computation
* |deally: constant or logarithmic
* Note: proofs cannot be succinct, but arguments can

ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments:

 Argument should be much shorter than the computation description

e |deally: constant or logarithmic in computation length n
» \erification should be much faster than the computation
* |deally: constant or logarithmic
* Note: proofs cannot be succinct, but arguments can

o Scalability: verifying argument is significantly faster than recomputation

* |mportant in many applications
* even without privacy... — alot of what is called ZK is actually not ZK but VC

Recall: Verifiable Computation

Computation f arbitrary computation of < 2°Y steps
| | Public input: X
Private input: w

Recall: Verifiable Computation
| | Public input: X

X,.f

y < f(X, W)

Argument 7 that f(x,w) =y

Completeness: honest verifier accepts if prover knows w such that f(x, w) =y
Knowledge Soundness: if honest verifier accepts, prover knows w

Zero-Knowledge: nothing about w is leaked
Efficiency: verifying & should be much faster than redoing the computation

State-of-the-Art

 Prover time : up to 10000x overhead

State-of-the-Art

 Prover time : up to 10000x overhead
 Depends on application and underlying cryptography

State-of-the-Art

 Prover time : up to 10000x overhead

 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)

State-of-the-Art

 Prover time : up to 10000x overhead

 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)
« Memory cost : usually linear In computation size

State-of-the-Art

 Prover time : up to 10000x overhead

 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)
« Memory cost : usually linear In computation size

e Often the limitation

State-of-the-Art

 Prover time : up to 10000x overhead
 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)
« Memory cost : usually linear In computation size
e Often the limitation
* Recent research improves on this — streaming zk-SNARKSs

State-of-the-Art

 Prover time : up to 10000x overhead
 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)
« Memory cost : usually linear In computation size
e Often the limitation

* Recent research improves on this — streaming zk-SNARKSs
* Verifier time: milliseconds for arbitrary computation

State-of-the-Art

 Prover time : up to 10000x overhead
 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)
« Memory cost : usually linear In computation size
e Often the limitation
* Recent research improves on this — streaming zk-SNARKSs

* Verifier time: milliseconds for arbitrary computation
 Concrete numbers depend on the construction

State-of-the-Art

 Prover time : up to 10000x overhead

 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)

« Memory cost : usually linear In computation size

e Often the limitation
* Recent research improves on this — streaming zk-SNARKSs
* Verifier time: milliseconds for arbitrary computation
 Concrete numbers depend on the construction
* There is often an explicit trade-off between prover’s and verifier’s time

State-of-the-Art

This number might be outdated

 Prover time : up to 10000x overhead

 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)

« Memory cost : usually linear In computation size

e Often the limitation
* Recent research improves on this — streaming zk-SNARKSs
* Verifier time: milliseconds for arbitrary computation
 Concrete numbers depend on the construction
* There is often an explicit trade-off between prover’s and verifier’s time
* Very active research topic — prover overhead decreases each year

Application:
Cryptocurrencies

Application:
Cryptocurrencies

Computation f: computing transaction y from public info

Public input: X (public information on blockchain)
Private input: w
* transaction amount, payer account, payee account, ...

.
R
RE 1

- -
"
' 1
'
p
1 =
L

Computation:
Public input: X

y < f(X, W)

Argument 7 that f(x,w) =y

Completeness

Knowledge Soundness
Zero-Knowledge
Efficiency

Applicati()n: £ The main source of R&D at this moment

* Spending $50B on research can secure

Cryptocurrencies { ' iy
Computation:
Public input: X

Computation f: computing transaction y from public info

Public input: X (public information on blockchain)
Private input: w
* transaction amount, payer account, payee account, ...

y < f(X, W)

—’
Argument 7 that f(x,w) =y

Completeness

Knowledge Soundness
Zero-Knowledge
Efficiency

zkVIL

Application

ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was correct Computation:
Public input: x (public input) Public input: X

Private input: w (model)

- -
-_ . -

‘\‘ Q".- "’

\’gz\ozzg/}

>

ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was correct Com.pu.tation:
Public input: x (public input) Public input: X

Private input: w (model)

L
.....

QQQQQQQ
\\‘Q"o"’

y < f(X, W)

’&« 3} -

e Argument 7 that f(x,w) =y

Completeness

Knowledge Soundness
Zero-Knowledge
Efficiency

ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was correct Com.pu.tation:
Public input: x (public input) Public input: X
Private input: w (model)

L
.....

Pe = - e y < J(X, W)
—
\\‘I&?&} g

AN S S o= Z Argument JT thatf(X9 W) — y

..... ‘,d

Completeness Fairness: the same

Knowledge Soundness model was used in all
Zero-Knowledge cases
Efficiency Property loans, ...

ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was corre ole)|=1s1e) gz 11ls)1 questions: : !
Public input: X (public input) * In which ML-related questions, ZK can
Private input: w (model) help? _

e o e * How does the low-level ML computation

look like, can it be made more “ZK-
frlendly”’?

—’
Argument 7 that f(x, w) =

Completeness Fairness: the same

Knowledge Soundness model was used in all
Zero-Knowledge cases
Efficiency Property loans, ...

Application: E-voting

"It's not who votes that counts.
It's who counts the votes.”

—apocrvphally attributed to
losef Vissarionovich Stalin,

Application: E-voting

Computation 7; tallying was correct
P J- tallying Computation:

Public input: X

Public input: X (all incoming signed encrypted ballots)
Private input: w; who voted for who

"It's not who votes that counts.
It's who counts the votes.”

—apocrvphally attributed to
losef Vissarionovich Stalin,

true « f(x, w)
_———————————

Argument 7 that f(x, w) = true

Completeness

Knowledge Soundness
Zero-Knowledge
Efficiency

Incrementally Verifiable Computation

Incrementally Verifiable Computation

Incrementally Verifiable Computation

Incrementally Verifiable Computation

Incrementally Verifiable Computation

* Allows to perform proving piecewise, spreading the costs over time

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

* Allows to perform proving piecewise, spreading the costs over time
 Example application 1: EVM (Ethereum Virtual Machine)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

* Allows to perform proving piecewise, spreading the costs over time
 Example application 1: EVM (Ethereum Virtual Machine)
» https://ethereum.org/en/developers/docs/evm/

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

* Allows to perform proving piecewise, spreading the costs over time
 Example application 1: EVM (Ethereum Virtual Machine)

» https://ethereum.org/en/developers/docs/evm/
 Example application 2: RISC Zero (proving RISC V execution correctness)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Incrementally Verifiable Computation

* Allows to perform proving piecewise, spreading the costs over time
 Example application 1: EVM (Ethereum Virtual Machine)
» https://ethereum.org/en/developers/docs/evm/

 Example application 2: RISC Zero (proving RISC V execution correctness)
e https://www.risczero.com/

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/

Current Machinery

The Current Machinery of ZK-SNARKSs

#! [no_std]
#![no_main]

fn fib(n: u32) -> u32 {
match n {
=> 0,
=> 1,

=> fib(n - 1) + fib(n - 2),

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq! (result, 21);

}

The Current Machinery of ZK-SNARKSs

Computation f Intermediate Representation

#! [no_std]
#![no_main]

fn fib(n: u32) -> u32 {
match n {

g => 0,

1=>1,

_ => fib(n - 1) + fib(n - 2),

}

}

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

Intermediate Representation

E-w

The Current Machinery of ZK-SNARKSs

ZK-SNARKs

L +84-16

Cryptography el 3
—> ﬂ + E =D

03b534e609362bad4adl4
B78a3becl1la8735¢c58721
A569d60350787f5f7511
6638lecd4f@5e249dc4c
094a9d0d1cftfo05c9b2cl
717a011cb9401026af9cC
BOd7b74802bc20533287

#! [no_std]
#![no_main]

fn fib(n: u32) -> u32 {
match n {
g => 0,
1=>1,
_ => fib(n - 1) + fib(n - 2),
}

}

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

Intermediate Representation

The Current Machinery of ZK-SNARKSs

ZK-SNARKs

03b534e609362bad4adl4
B78a3becl1la8735¢c58721
A569d60350787f5f7511
6638lecd4f@5e249dc4c
094a9d0d1cftfo05c9b2cl
717a011cb9401026af9cC
BOd7b74802bc20533287

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct

 But what is a computation?
* |R in other contexts: bytecode, LLVM (language-independent IR), ...

Clang

LLVM
IR

LLVM compiler

other Frontend Compiler

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?

* |R in other contexts: bytecode, LLVM (language-independent IR), ...

* |RIn ZK: The goal is to verify a function, not to compute it

Clang

LLVM
IR

LLVM compiler

other Frontend Compiler

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?

* |R in other contexts: bytecode, LLVM (language-independent IR), ...

* |RIn ZK: The goal is to verify a function, not to compute it

* |R: (1) a machine model + (2) how to verify its computation

Clang

other Frontend Compiler

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?
* |R in other contexts: bytecode, LLVM (language-independent IR), ...
* |RIn ZK: The goal is to verify a function, not to compute it
* |R: (1) a machine model + (2) how to verify its computation
1. Machine model: Turing machine, random access machine, circuits

Clang

other Frontend Compiler

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?
* |R in other contexts: bytecode, LLVM (language-independent IR), ...
* |RIn ZK: The goal is to verify a function, not to compute it
* |R: (1) a machine model + (2) how to verify its computation
1. Machine model: Turing machine, random access machine, circuits

2. Formalise its verification as a few efficiently verifiable Checks using a
suitable “proof system” C Cland

LLVM

R | LLVM compiler

other Frontend Compiler

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?
* |R in other contexts: bytecode, LLVM (language-independent IR), ...
* |RIn ZK: The goal is to verify a function, not to compute it
* |R: (1) a machine model + (2) how to verify its computation
1. Machine model: Turing machine, random access machine, circuits

2. Formalise its verification as a few efflClentIy verifiable Checks usmg a
suitable “proof system”

* Crypto part:

C Clang

R | LLVM compiler

other Frontend Compiler

Intermediate Representation

 Main philosophical question: we want to verify a computation is correct
 But what is a computation?
* |R in other contexts: bytecode, LLVM (language-independent IR), ...
* |RIn ZK: The goal is to verify a function, not to compute it
* |R: (1) a machine model + (2) how to verify its computation
1. Machine model: Turing machine, random access machine, circuits

2. Formalise its verification as a few efflClentIy verifiable Checks usmg a
suitable “proof system”

* Crypto part:
 Implement the checks

C Clang

LLVM compiler

other Frontend Compiler

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, ...

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, ...

e Model is less efficient &

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, ...

 Model is less efficient &
o Efficient verification &): verify each gate is correctly computed

*

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks

« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS,
y

 Model is less efficient &
o Efficient verification &): verify each gate is correctly computed
« Common solution 2: implement a RISC processor instruction set

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks

« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS,
y

 Model is less efficient ¢

o Efficient verification &): verify each gate is correctly computed
« Common solution 2: implement a RISC processor instruction set

 Model much more efficient &

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks

« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS,
y

 Model is less efficient &

o Efficient verification &): verify each gate is correctly computed
« Common solution 2: implement a RISC processor instruction set

 Model much more efficient &

e Adding verification more costly & (many ops are global)

-+

g i §
X X Xy

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, ...

 Model is less efficient &
o Efficient verification &): verify each gate is correctly computed

« Common solution 2: implement a RISC processor instruction set
« Model much more efficient &

e Adding verification more costly & (many ops are global)
* Verifying random memory access is costly, so many IRs avoid it

*

+ * +

g i §
X X Xy

Intermediate Representation

 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, ...

 Model is less efficient &
o Efficient verification &): verify each gate is correctly computed

« Common solution 2: implement a RISC processor instruction set
« Model much more efficient &

e Adding verification more costly & (many ops are global)

* Verifying random memory access is costly, so many IRs avoid it
e However, model is efficient without such access

*

+ * +

g i §
X X Xy

#![no_std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 =>1,
=> fib(n - 1) + fib(n - 2),

}
}

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

#![no_std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) —> u32 {

match n {

0 => 0,
1 =>1,
_ => fib(n - 1) + fib(n - 2),

s
» The frontend DSL compiles source code to the chosen IR |’

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

#![no_std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) —> u32 {

match n {

=> @’

=> 1'

=> fib(n - 1) + fib(n - 2),

* The frontend DSL compiles source code to the chosen IR
C |\/|any DSLs by NOW #[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

#![no_std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) —> u32 {

match n {

== @’

— 1’

=> fib(n - 1) + fib(n - 2),

* The frontend DSL compiles source code to the chosen IR
C |\/|any DSLs by NOW #[nexus: :main]

« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | "' *

let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

Ly
» The frontend DSL compiles source code to the chosen IR |’
 Many DSLs by now #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);

assert_eq!(result, 21);

}

#![no _std]
#![no_main]

On Domain-Specific Languages | -

match

=> fib(n - 1) + fib(n - 2),

* The frontend DSL compiles source code to the chosen IR

* Many DSLS by now #[nexgs::main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);

assert_eq!(result, 21);

» Different from general purpose languages:

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

s
» The frontend DSL compiles source code to the chosen IR |’

* Many DSLS by now #[nexgs::main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);

assert_eq!(result, 21);

* Different from general purpose languages:)
* “Verification”, not "computation” languages

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_=> fib(n - 1) + fib(n - 2),

s
» The frontend DSL compiles source code to the chosen IR |’

° Many DSLs by ale), #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);
. assert_eq!(result, 21);
* Different from general purpose languages:)

* “Verification”, not "computation” languages
* Optimization depends on IR; certain operations are “unexpectedly” costly

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

}

» The frontend DSL compiles source code to the chosen IR |’

° Many DSLs by ale), #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);
. assert_eq!(result, 21);
* Different from general purpose languages:)

 “Verification", not "computation” languages
* Optimization depends on IR; certain operations are “unexpectedly” costly
 DSLs change a lot, but are fun

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {
0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

ty

» The frontend DSL compiles source code to the chosen IR |’

° Many DSLs by ale), #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);
. assert_eq!(result, 21);
* Different from general purpose languages:)

* “Verification", not "computation” languages

* Optimization depends on IR; certain operations are “unexpectedly” costly
 DSLs change a lot, but are fun

* | earn one: then you see how big the intermediate interpretations can be

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

}

» The frontend DSL compiles source code to the chosen IR |’

° Many DSLs by ale), #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);
. assert_eq!(result, 21);
* Different from general purpose languages:)

* “Verification”, not "computation” languages
* Optimization depends on IR; certain operations are “unexpectedly” costly
 DSLs change a lot, but are fun
* | earn one: then you see how big the intermediate interpretations can be
 And how efficient a SNARK you need

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

}

» The frontend DSL compiles source code to the chosen IR |’

° Many DSLs by ale), #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);
. assert_eq!(result, 21);
* Different from general purpose languages:)

* “Verification", not "computation” languages
* Optimization depends on IR; certain operations are “unexpectedly” costly
 DSLs change a lot, but are fun
* | earn one: then you see how big the intermediate interpretations can be
 And how efficient a SNARK you need
* |Importantly, you do not have to sit down and write an IR for your task

#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

}

» The frontend DSL compiles source code to the chosen IR |’

° Many DSLs by ale), #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
 Each has their own limitations let result = fib(n);
. assert_eq!(result, 21);
* Different from general purpose languages:)

* “Verification", not "computation” languages
* Optimization depends on IR; certain operations are “unexpectedly” costly
 DSLs change a lot, but are fun
* | earn one: then you see how big the intermediate interpretations can be
 And how efficient a SNARK you need
* |Importantly, you do not have to sit down and write an IR for your task
* There are tools for it if you know a high-level programming language!

e Collaboration questions:

« How to compile high-

On DOmain'SpeCifiC Languag level code efficiently to
ZK IRs?

« How to formally verify

| that compilation was
 The frontend DSL compiles source code to the chose Lonact)

 Many DSLs by now . .
* A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, DeS|gtc Of Sl
 Each has their own limitations let result = fib(n);

» Different from general purpose languages: | cemerteatiresutt, A
* “Verification”, not "computation” languages
* Optimization depends on IR; certain operations are “unexpectedly” costly

 DSLs change a lot, but are fun
* | earn one: then you see how big the intermediate interpretations can be

 And how efficient a SNARK you need

* |Importantly, you do not have to sit down and write an IR for your task
* There are tools for it if you know a high-level programming language!

Backend

Intermediate Representation (Polynomial) Interactive Oracle Proof

“Non-
=, Cryptographic”®

" |techniques 1
—

e,
—

B2

Ba

Backend
Intermediate Representation (Polynomial) Interactive Oracle Proof ZK-SNARKSs

“Non- L +84-16
=, Ccryptographic™® $ -
— |techniques A | Cryptography
— -2
. 2 -Gp-2
. ” 4 B 03b534e609362badas 14
> { \ B78a3becla8735c58721
§ 1 . , A569d60350787 517511
N | : 66381lecd4t@5e249dc4c
— 094a9d0d1lcf605c9b2cl
N 717a011chb9401026at9cC
BOd7b74802bc20533287

Backend

Intermediate Representation (Polynomial) Interactive Oracle Proof ZK-SNARKSs

T +Q 16

Cryptography ‘&E—
...._______._._._.;. +

= | cryptographic™y
= |ltechniques

03b534e609362badadlsd

B7/8a3becla8735¢c58721

A569d6035078715f7511

B2

6638lecd4t05e249dc4c

094a9d@d1cTf605c9b2cl

717a011cbh9401026aft9c
BOd7b74802bc20533287

Usual Proof

Usual Proof

n

Read every bit
Accept/reject

Usual Proof

X.W=a €I N X
s ’:°, g G raeer s a E [t

NP: class of languages that have proofs w
which can be verified in polynomial time

Read every bit
Accept/reject

Usual Proof

n
X.W=a € |- _

— .
>

NP: class of languages that have proofs w
which can be verified in polynomial time

. _ n30
Think of n = 2 Read every bit

Accept/reject

2=26O

Even prover time n IS Impenetrable
We want verifier to be much faster than 2>

P
ro
b
ab
1S
tic
all
y
Chec
k
ab
le
P
ro
of
(...
19
02
)

J_n

Probabilistically Checkable Proof (~1992)

X,w=ae€["

b = Enc(a) € F*™

Y
™~
s
:
— .
~.)
-
"
!
-
~

Probabilistically Checkable Proof (~1992)

X,w=ae€["

b = Enc(a) € F*™

V can toss random coins (hot
secure if V is deterministic)

e [1,/(n)] ~
bli] |

Probabilistically Checkable Proof (~1992)

X,w=a e[

b = Enc(a) € F*™

V can toss random coins (hot
secure if V is deterministic)

e [1,(n)] A~
blil |

Accept/reject
based on queried bits

Probabilistically Checkable Proof (~1992)

X,w=ae€["

b =Enc(a) € |

V can toss random coins (hot
secure if V is deterministic)

e [1,/(n)] A~
bli] |

Accept/reject
based on queried bits

Key insight: allowing randomness

makes it much more efficient to verify!

PCP Theorem

J_lfl

b =Enc(a) e ¥ ,,e)'o ,
I EEEEEE SEEEE TSSO ’

PCP[r(n), g(n)] - class of languages where proofs can be jss (not '
verified by using r(n) verifier’s random bits and g(n) queries inistic)

PCP theorem: PCP[O(log 1), O(1)] = NP

e Celebrated as one of the most central theorems in
complexity theory

' "
\\
A\

Accept/reject

based on queried bits

PCP Theorem

J_lfl

b =Enc(a) e ¥ ,,e)'o ,
I EEEEEE SEEEE TSSO ’

PCP[r(n), g(n)] - class of languages where proofs can be jss (not '
verified by using r(n) verifier’s random bits and g(n) queries inistic)

PCP theorem: PCP[O(log 1), O(1)] = NP

e Celebrated as one of the most central theorems in
complexity theory

\ J
N\
\ ,

DB DD Known PCPs are quite inefficient Accept/reject

for the prover (proof length O(n log” n)) based on queried bits

Interactive Oracle Proof (2016)

Xx,w=a¢€lF"

Interactive Oracle Proof (2016)

X,w=a € [["

b? = Enc(a) € /'™ -~

Random, unpredictable, independent
from previous messages

Interactive Oracle Proof (2016)
Random, unpredictable, independent

_ n
Xx,Ww=ae€l £\ from previous messages

b, = Ency(a) € | -
< b, = EﬂCz(d, r) = [—fz(n) S
IOk ner

Interactive Oracle Proof (2016)
Random, unpredictable, independent

_ n
Xx,Ww=ae€l £\ from previous messages

b, = Ency(a) € | |
NENEENEENRENRERRZY)
bf = Enc,(a, r?) e 20

Interactive Oracle Proof (2016)
Random, unpredictable, independent

_ n
Xx,Ww=ae€l £\ from previous messages

b? = Enc(a) € I e
3 = Enc,(a, ry) € F2™
-DﬁDID]]]jID]} ’J r,eF

Interactive Oracle Proof (2016)
Random, unpredictable, independent

_ n
Xx,Ww=ae€l £\ from previous messages

b, = Ency(a) € | |
(NNNN NENEN _§EN 39 '

J

b, = Ency(a,r)) € I
'.j]]]]]j]]]] 3

J

' L}

Interactive Oracle Proof (2016)

Xx,w=a¢€lF"

b? = Enc(a) € F1'"W
__rlj

2
L

b, = Ency(a,r) € F2"
I SEREEE B EmEN B0 ek

Random, unpredictable, independent

from previous messages

Accept/reject
based on
randomizers and
queried bits

Interactive Oracle Proof (2016)

_ n
Xx,Ww=ae€l £\ from previous messages

b? = Ency(a) € | |
__rlj

2
L

bf = Encs(a, r?) e 2

Random, unpredictable, independent

Accept/reject
based on
randomizers and
queried bits

Key insight (1980+): allowing
Interaction makes it much more
efficient to prove and verify

Interactive Oracle Proof (2016)

X,w=a € [["

bf — Encz(a, 7']) = [:fz(n) —

Random, unpredictable, independent

from previous messages

bK=

T Key Ideas:
e \V can spot-check certain coordinates of the encodings
* For efficiency, need a tool to “smear" errors

Key insight « => Use error-correcting codes
Interaction makes it much more bli]

efficient to prove and verify — |

Accept/reject
based on
randomizers and
queried bits

e Collaboration questions:
* Find good error-correcting codes
 Find out which codes are

Interactive Oracle Proof

X, w=a € needed...
b * Give input to cryptographers

=Enci(@) € /"W
-D]j]]m-b -- about known coding theory facts

1 =1 ‘
b, = Ency(a,r)) € F2() - -# 2
' EEENES B EEEE AP e F

bK=

T Key ideas:
e \V can spot-check certain coordinates of the encodings
* For efficiency, need a tool to “smear" errors

Key insight « => Use error-correcting codes
Interaction makes it much more bli]

efficient to prove and verify — |

Accept/reject
based on
randomizers and
queried bits

Polynomial Interactive Oracle Proof (2020)

X, W=2a & [Random, unpredictable, independent

fl (X) — En C (a) = |]:< [X] % from previous messages

Accept/reject
based on

W randomizers and
 queried evaluations

Polynomial Interactive Oracle Proof (2020)

Random, unpredictable, independent
X,w=a € [‘NP P

fl (X) — En C (a) = |]:< [X] - from previous messages

Key insight (trade-off): allowing a s Nl Accept/reject

more powerful oracle makes IOP based on

—_— 3| randomizers and
4 queried evaluations

more efficient but implementing
the oracle is more costly

Polynomial Interactive Oracle Proof (2020)

X, W=2a & [Random, unpredictable, independent

fl (X) — En C (a) = |]:< [X] ﬁ from previous messages

Jx(X) =En : :
Key ideas: . .
III IIIII . . 3 1 instead of just n
e \/ can query polynomials at random points i
. e Since low-degree polynomials have few roots,
Key insight (tra

more powerful _ "andom evaluation = 0 == polynomial = 0 w.h.p

more efficient but implementing
the oracle is more costly

Accept/reject
based on

f(—l), randomizers and
o queried evaluations

Insufficiency

 PIOPs are idealized protocols

Insufficiency

 PIOPs are idealized protocols

* You need to trust that the oracles function correctly

Insufficiency

 PIOPs are idealized protocols
* You need to trust that the oracles function correctly

* The next step in zk-SNARK design: instantiating the boxes

Insufficiency

 PIOPs are idealized protocols
* You need to trust that the oracles function correctly
* The next step in zk-SNARK design: instantiating the boxes

* |nstantiating makes protocols less efficient

Insufficiency

 PIOPs are idealized protocols

* You need to trust that the oracles function correctly

* The next step in zk-SNARK design: instantiating the boxes
* |nstantiating makes protocols less efficient

e ... and also only computationally secure

Backend

(Polynomial) Interactive Oracle Proof

Backend
(Polynomial) Interactive Oracle Proof @ Interactive Protocols

W +d-16
. \\f\) *L = @
& rJ Commitment
el] 4
- \:\ —2

Backend
(Polynomial) Interactive Oracle Proof @ Interactive Protocols

Fiat-Shamir

ZK-SNARKs

L +84-16
w-

- ——

g+l -2

03b534e609362bad4adl4s
B78a3bec1a8735c58721
A569d60350787f5f7511

66381ecd4f05e249dc4c

094a9d0d1cf605c9b2c1
, 717a011cb9401026af9c
J\@?F [|B0d7b74802bc20533287

Backend

(Polynomial) Interactive Oracle Proof B Interactive Protocols ZK-SNARKS

We will not
discuss FS today

03b534e609362badadls
B78a3becl1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
7172011cbh9401026af9c
Y 1B0d7b74802bc20533287

Vector And Polynomial Commitment Scheme

e VCS: Real-life instantiation of the IOP
black box

Vector And Polynomial Commitment Scheme

e VCS: Real-life instantiation of the IOP
black box
» Security definitions of VCS, IOP are

chosen so that combining a secure VCS
with a secure IOP results in a secure zk-

SNARK

Vector And Polynomial Commitment Scheme

VCS: Real-life instantiation of the IOP
black box

Security definitions of VCS, IOP are
chosen so that combining a secure VCS

with a secure IOP results in a secure zk-
SNARK

Efficiency depends both on the efficiency
of the IOP and the VCS

Vector And Polynomial Commitment Scheme

VCS: Real-life instantiation of the IOP
black box

Security definitions of VCS, IOP are
chosen so that combining a secure VCS

with a secure IOP results in a secure zk-
SNARK

Efficiency depends both on the efficiency
of the IOP and the VCS

VCS gives most of the structural flavour
to resulting zk-SNARKS:

Vector And Polynomial Commitment Scheme

VCS: Real-life instantiation of the IOP
black box

Security definitions of VCS, IOP are
chosen so that combining a secure VCS

with a secure IOP results in a secure zk-
SNARK

Efficiency depends both on the efficiency
of the IOP and the VCS

VCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)

Vector And Polynomial Commitment Scheme

VCS: Real-life instantiation of the IOP
black box

Security definitions of VCS, IOP are
chosen so that combining a secure VCS

with a secure IOP results in a secure zk-
SNARK

Efficiency depends both on the efficiency
of the IOP and the VCS

VCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)
* [Jrusted parameters

Vector And Polynomial Commitment Scheme

VCS: Real-life instantiation of the IOP
black box

Security definitions of VCS, IOP are
chosen so that combining a secure VCS
with a secure IOP results in a secure zk-

SNARK

Efficiency depends both on the efficiency
of the IOP and the VCS

VCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)
* [Jrusted parameters

PCS: Real-life instantiation of the PIOP
black box

Security definitions of PCS, PIOP are
chosen so that combining a secure PCS

with a secure PIOP results in a secure
zk-SNARK

Efficiency depends both on the efficiency
of the PIOP and the PCS

PCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)
* [Jrusted parameters

Vector And Polynomial Commitment Scheme

VCS: Real-life instantiation of the IOP
black box

Security definitions of VCS, IOP are
chosen so that combining a secure VCS
with a secure IOP results in a secure zk-

SNARK

Efficiency depends both on the efficiency
of the IOP and the VCS

VCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)
* [Jrusted parameters

PCS: Real-life instantiation of the PIOP
black box

Security definitions of PCS, PIOP are
chosen so that combining a secure PCS

with a secure PIOP results in a secure
zk-SNARK

Efficiency depends both on the efficiency
of the PIOP and the PCS

PCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)
* [Jrusted parameters

Security assumptions and trusted

parameters depend only on the VCS/PCS

Current Main "Cryptographic" Approaches

Pairing-
based PCS +
PIOP

Hash-based
VCS + IOP

Assumption

Post-

Trusted

Quantum para-

nEGEE

Prover
speed

Verifier speed

Argument
length

Examples

Plonk, Marlin,

.\./arious O(n log n) Small constant Very short Groth16, Polymath,
pairing-based NG Ves heay number of heavy | (<600 B for | Lunar, Basilisk,
(elliptic curve) 'y operations (a few any Vampire, Spartan,
assumptions operations milliseconds) |computation)| . "YRerrionk,

P P BabySpartan,
Large number of FRI, STIR,
O(nhlogn) | _. . WHIR
A secure hash simple operations ’
function Yes Minimal| 2F €Ven New schemes Long (50 B_rgkedovyn,
O(n) simple KB-500KB) | Binius, Orion,
(CRHF) . (WHIR) have an I
operations Igero,

efficient verifier

BaselFold

Current Main "Cryptographic" Approaches

More efficient IOP
part, a lot of algebra

Assumption

Post- Trusted
Quantum para-
meters

Prover
speed

Verifier speed

Argument
length

Examples

Plonk, Marlin,

Paifing Various O(n log n) Small constant Very short Groth16,

- et Polymath, Lunar,
based PCS + i based No Yes heavy numbgr of heavy | (<600 B for Basilisk, Vampire,
PIOP (elliptic curve) operations | oPerations (a few any Spartan,

assumptions P milliseconds) computation)| HyperPlonk,
BabySpartan,
Large number of FRI, STIR,
A secure hash Oln log n) simple operations WHIR,
Hash-based . L or even Long (50 Brakedown,
function Yes Minimal . New schemes . .
VCS + IOP O(n) simple KB-500KB) | Binius, Orion,
(CRHF) . (WHIR) have an .
operations Ligero,

efficient verifier

BaseFold

Current Main "Cryptographic" Approaches

More efficient IOP
part, a lot of algebra

Assumption

Pairing-
based PCS +
PIOP

Post- Trusted
Quantum para-
UEEIE

Prover
speed

Verifier speed

Argument
length

Examples

Plonk, Marlin,

Hash-based
VCS + IOP

More efficient CS part, no algebra at all

Various O(n log n) Small constant Very short Groth16,
pairing-based J number of heavy | (<600 B for | Polymath, Lunar,
L No Yes heavy . Basilisk, Vampire,
(elliptic curve) . operations (a few any Spartan
. operations . . P ’
assumptions milliseconds) computation)| HyperPlonk,
BabySpartan,
O(n log n) Large number of FRI, STIR,
A secure hash J simple operations WHIR,
. L or even Long (50 Brakedown,
function Yes Minimal . New schemes . .
O(n) simple KB-500KB) | Binius, Orion,
(CRHF) . (WHIR) have an .
operations . = Ligero,
efficient verifier BaseFold

Current Main "Cryptographic" Approaches

Other approaches exist but are currently more experimental (lattice-based, ...)

More efficient IOP
part, a lot of algebra

Assumption

Pairing-
based PCS +
PIOP

Post- Trusted
Quantum para-
UEEIE

Prover
speed

Verifier speed

Argument
length

Examples

Plonk, Marlin,

Hash-based
VCS + IOP

More efficient CS part, no algebra at all

Various O(n log n) Small constant Very short Groth16,
pairing-based J number of heavy | (<600 B for | Polymath, Lunar,
L No Yes heavy . Basilisk, Vampire,
(elliptic curve) . operations (a few any Spartan
. operations . . P ’
assumptions milliseconds) computation)| HyperPlonk,
BabySpartan,
O(n log n) Large number of FRI, STIR,
A secure hash J simple operations WHIR,
. L or even Long (50 Brakedown,
function Yes Minimal . New schemes . .
O(n) simple KB-500KB) | Binius, Orion,
(CRHF) . (WHIR) have an .
operations . = Ligero,
efficient verifier BaseFold

Current Main "Cryptographic" Approaches

Other approaches exist but are currently more experimental (lattice-based, ...)

More efficient IOP
part, a lot of algebra

Pairing-
based PCS +
PIOP

Hash-based
VCS + IOP

More efficient CS part, no algebra at all

Assumption

Post-

Trusted

Quantum para-

nEGEE

Inherent trade-off between efficiency and
trusted parameters/assumptions

Prover
speed

Verifier speed

Argument
length

Examples

Plonk, Marlin,
Various O(n log n) Small constant Very short Groth16,
pairing-based J number of heavy | (<600 B for | Polymath, Lunar,
L No Yes heavy . Basilisk, Vampire,
(elliptic curve) . operations (a few any Spartan
. operations . . partan,
assumptions milliseconds) computation)| HyperPlonk,
BabySpartan,
O(n log n) Large number of FRI, STIR,
A secure hash J simple operations WHIR,
. L or even Long (50 Brakedown,
function Yes Minimal . New schemes . .
O(n) simple KB-500KB) | Binius, Orion,
(CRHF) . (WHIR) have an .
operations . = Ligero,
efficient verifier BaseFold

Background Material

» ZK MOOC: hitps://zk-learning.org/

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/
» Top presenters

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/
» Top presenters
» 2023 Spring: uptodate at that moment

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/
» Top presenters
» 2023 Spring: uptodate at that moment
» More than 2000 people on MOOC'’s Discord server (many from industry)

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
- Justin Thaler’s book:

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:

» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:

» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html

» Freelly available

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:

» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html

» Freelly available

» 2023 Spring: uptodate at that moment

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:

» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html

» Freelly available

» 2023 Spring: uptodate at that moment

» Meant for non-cryptographers (but related background helps)

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:

» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html

» Freelly available

» 2023 Spring: uptodate at that moment

» Meant for non-cryptographers (but related background helps)
» Alessandro Chiesa and Elon Yogev’s book:

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/
» Top presenters
» 2023 Spring: uptodate at that moment
» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:
» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html
» Freelly available
» 2023 Spring: uptodate at that moment
» Meant for non-cryptographers (but related background helps)
» Alessandro Chiesa and Elon Yogev’s book:
» https://snargsbook.org/

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/
» Top presenters
» 2023 Spring: uptodate at that moment
» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:
» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html
» Freelly available
» 2023 Spring: uptodate at that moment
» Meant for non-cryptographers (but related background helps)
» Alessandro Chiesa and Elon Yogev’s book:
» https://snargsbook.org/
- 2024, modern, and very technical

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

» ZK MOOC: hitps://zk-learning.org/

» Top presenters

» 2023 Spring: uptodate at that moment

» More than 2000 people on MOOC'’s Discord server (many from industry)
 Justin Thaler’s book:

» https://people.cs.georgetown.edu/|thaler/ProofsArgsAndZK.html

» Freelly available

» 2023 Spring: uptodate at that moment

» Meant for non-cryptographers (but related background helps)
» Alessandro Chiesa and Elon Yogev’s book:

» https://snargsbook.org/

- 2024, modern, and very technical

» Specialized to cover hash-based zk-SNARKs and only their foundations

https://zk-learning.org/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://snargsbook.org/

Background Material

- MoonMath Manual: // background math for zk-SNARKs

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/

- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra
» Various algorithms for fast arithmetic, polynomials, ..., ending with
factorisation

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra
» Various algorithms for fast arithmetic, polynomials, ..., ending with
factorisation
» Relevant for this course: polynomial multiplication and division, FFT, ...

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra
» Various algorithms for fast arithmetic, polynomials, ..., ending with
factorisation
» Relevant for this course: polynomial multiplication and division, FFT, ...
- Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra
» Various algorithms for fast arithmetic, polynomials, ..., ending with
factorisation
» Relevant for this course: polynomial multiplication and division, FFT, ...
- Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography
* If you need to know more about elliptic curves & pairings

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra
» Various algorithms for fast arithmetic, polynomials, ..., ending with
factorisation
» Relevant for this course: polynomial multiplication and division, FFT, ...
- Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography
» If you need to know more about elliptic curves & pairings
- ZK Podcast: https://zeroknowledge.fm/

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

- MoonMath Manual: // background math for zk-SNARKs
» https://leastauthority.com/community-matters/moonmath-manual/
- Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra
» Top book about efficient computer algebra
» Various algorithms for fast arithmetic, polynomials, ..., ending with
factorisation
» Relevant for this course: polynomial multiplication and division, FFT, ...
- Nadia El Mrabet, Marc Joye: Guide to Pairing-Based Cryptography
* If you need to know more about elliptic curves & pairings
- ZK Podcast: https://zeroknowledge.fm/
 Often top researchers talking about the most recent work

https://leastauthority.com/community-matters/moonmath-manual/
https://zeroknowledge.fm/

Background Material

Background Material

 Thousands of YouTube videos

Background Material

 Thousands of YouTube videos

» Just search for anything (for example, “GKR")

Background Material

 Thousands of YouTube videos
- Just search for anything (for example, “GKR")

» But ask me for who the good presenters are

Important References

e (Usual proofs:) Euclid. Elements (~300 BC)
o« PCP:
e Sanjeev Arora, Shmuel Safra. Probabilistic checking of proofs: A new
characterization of NP (1998)
e Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy.
Proof verification and the hardness of approximation problems (1998)
o |OP:
e Eli Ben-Sasson, Alessandro Chiesa, Nicholas Spooner. Interactive Oracle
Proofs (2016)
 Omer Reingold, Guy N. Rothblum, Ron D. Rothblum. Constant-round
interactive proofs for delegating computation (2016)

Important References

* PIOP:

 Benedikt Bunz, Ben Fisch, Alan Szepieniec. Transparent SNARKSs from
DARK compilers (2020)

* Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal
and Updatable SRS (2020)

e PCS:
* Aniket Kate, Gregory M. Zaverucha, lan Goldberg. Constant-Size
Commitments to Polynomials and Their Applications (2010)
e (Definition of interactive protocols and ZK) Shafi Goldwasser, Silvio
Micali, Charles Rackoff: The Knowledge Complexity of Interactive Proof-
Systems. STOC 1985: 291-304
* Noir: https://noir-lang.org/

https://dblp.org/db/conf/stoc/stoc85.html#GoldwasserMR85
https://noir-lang.org/

