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Brief Introduction

» Introduction to zero-knowledge and zk-SNARKS
» Goal: introduction, trying to sell the hype, collaboration
» Give an up-to-date overview of the area
» /K field is wide, and there is a lot of collaborations possible

» Coding theory, ML, formal verification, ...
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Motivation: Verifiable Computation
| | Public input: X

X, f
y < f(X,w)
‘- The whole currently popular ZK field could

also be called “verifiable computation” since

- that is the driving application

want the com . 7K has other, more classical applications, like Iy correct or |
leak my priv - gythentication, that currently get less attention >@ammed?

» Less money ®...
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Solution: zk-SNARK

Computation: f Computation: f
Public input (statement) x Public input (statement) x
Private input (withess) w

y < f(X, W)

Proof 7 that f(x,w) =y

Proof can be interactive:

* Consist of several message back and forth
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Computation: f Computation: f

Public input (statement) x Public input (statement) x
Private input (withess) w

y < J(X, W)
Proof 7 that f(x,w) =y

 Completeness: honest verifier accepts honest prover
« Knowledge Soundness: if honest verifier accepts, prover “knows" w

* Proof = knowledge-sound even if prover is omnipotent

 Argument = knowledge-sound only against polynomial-time provers
 Zero-Knowledge: nothing about the private input of honest prover is leaked
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Efficiency

Computation f: arbitrary computation of < 2°Y steps
| | Public input: X
Private input: w

’) X,
y < f(X, W)

T (. >

Thank you! Here’s your $1000
4—

If verification of a zk-SNARK takes as much time as
recomputing, the application is less interesting!

The cloud still preserves her privacy
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ZK-SNARKs

» Zero-knowledge succinct non-interactive arguments of knowledge
* Adds efficiency requirements to “just” ZK arguments:

 Argument should be much shorter than the computation description

e |deally: constant or logarithmic in computation length n
» \erification should be much faster than the computation
* |deally: constant or logarithmic
* Note: proofs cannot be succinct, but arguments can

o Scalability: verifying argument is significantly faster than recomputation

* |mportant in many applications
* even without privacy... — alot of what is called ZK is actually not ZK but VC
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Recall: Verifiable Computation
| | Public input: X

X,.f

y < f(X, W)

Argument 7 that f(x,w) =y

Completeness: honest verifier accepts if prover knows w such that f(x, w) =y
Knowledge Soundness: if honest verifier accepts, prover knows w

Zero-Knowledge: nothing about w is leaked
Efficiency: verifying & should be much faster than redoing the computation
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State-of-the-Art

This number might be outdated

 Prover time : up to 10000x overhead

 Depends on application and underlying cryptography
 But: sometimes can be only 10x (GKR with regular circuits)

« Memory cost : usually linear In computation size

e Often the limitation
* Recent research improves on this — streaming zk-SNARKSs
* Verifier time: milliseconds for arbitrary computation
 Concrete numbers depend on the construction
* There is often an explicit trade-off between prover’s and verifier’s time
* Very active research topic — prover overhead decreases each year
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Computation f: computing transaction y from public info

Public input: X (public information on blockchain)
Private input: w
* transaction amount, payer account, payee account, ...
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Knowledge Soundness
Zero-Knowledge
Efficiency




Applicati()n: £  The main source of R&D at this moment

* Spending $50B on research can secure

Cryptocurrencies { ' iy
Computation:
Public input: X

Computation f: computing transaction y from public info

Public input: X (public information on blockchain)
Private input: w
* transaction amount, payer account, payee account, ...

y < f(X, W)

—’
Argument 7 that f(x,w) =y

Completeness

Knowledge Soundness
Zero-Knowledge
Efficiency




zkVIL

Application




ApplicatiOn: ZkM L Or: model was trained correctly
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ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was correct Com.pu.tation:
Public input: x (public input) Public input: X

Private input: w (model)

L
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ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was correct Com.pu.tation:
Public input: x (public input) Public input: X
Private input: w (model)
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Completeness  Fairness: the same

Knowledge Soundness model was used in all
Zero-Knowledge cases
Efficiency  Property loans, ...




ApplicatiOn: ZkM L Or: model was trained correctly

Computation f: inference was corre ole)|=1s1e) gz 11ls)1 questions: : !
Public input: X (public input) * In which ML-related questions, ZK can
Private input: w (model) help? _

e o e * How does the low-level ML computation

look like, can it be made more “ZK-
frlendly”’?

—’
Argument 7 that f(x, w) =

Completeness  Fairness: the same

Knowledge Soundness model was used in all
Zero-Knowledge cases
Efficiency  Property loans, ...
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Application: E-voting

Computation 7; tallying was correct
P J- tallying Computation:

Public input: X

Public input: X (all incoming signed encrypted ballots)
Private input: w; who voted for who

"It's not who votes that counts.
It's who counts the votes.”

—apocrvphally attributed to
losef Vissarionovich Stalin,

true « f(x, w)
_———————————

Argument 7 that f(x, w) = true

Completeness

Knowledge Soundness
Zero-Knowledge
Efficiency
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Incrementally Verifiable Computation

* Allows to perform proving piecewise, spreading the costs over time
 Example application 1: EVM (Ethereum Virtual Machine)
» https://ethereum.org/en/developers/docs/evm/

 Example application 2: RISC Zero (proving RISC V execution correctness)
e https://www.risczero.com/
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The Current Machinery of ZK-SNARKSs

#! [no_std]
#![no_main]

fn fib(n: u32) -> u32 {
match n {
=> 0,
=> 1,

=> fib(n - 1) + fib(n - 2),

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq! (result, 21);

}
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#! [no_std]
#![no_main]

fn fib(n: u32) -> u32 {
match n {

g => 0,

1=>1,

_ => fib(n - 1) + fib(n - 2),

}

}

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

Intermediate Representation

E-w

The Current Machinery of ZK-SNARKSs
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#! [no_std]
#![no_main]

fn fib(n: u32) -> u32 {
match n {
g => 0,
1=>1,
_ => fib(n - 1) + fib(n - 2),
}

}

#[nexus: :main]

fn main() {
let n = 7;
let result = fib(n);
assert_eq!(result, 21);

}

Intermediate Representation

The Current Machinery of ZK-SNARKSs
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 Main philosophical question: we want to verify a computation is correct
 But what is a computation?
* |R in other contexts: bytecode, LLVM (language-independent IR), ...
* |RIn ZK: The goal is to verify a function, not to compute it
* |R: (1) a machine model + (2) how to verify its computation
1. Machine model: Turing machine, random access machine, circuits

2. Formalise its verification as a few efflClentIy verifiable Checks usmg a
suitable “proof system”

* Crypto part:
 Implement the checks

C Clang

LLVM compiler

other Frontend Compiler
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 Tradeoff between efficiencies of computation model and cryptographic checks
« Common solution 1: some variant of arithmetic circuits
* AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, ...

 Model is less efficient &
o Efficient verification &): verify each gate is correctly computed

« Common solution 2: implement a RISC processor instruction set
« Model much more efficient &

e Adding verification more costly & (many ops are global)

* Verifying random memory access is costly, so many IRs avoid it
e However, model is efficient without such access

*

+ * +

g i §
X X Xy
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#![no _std]
#![no_main]

On Domain-speCific Languages fn fib(n: u32) -> u32 {

match n {

0 => 0,
1 => 1,
_ => fib(n - 1) + fib(n - 2),

Ly
» The frontend DSL compiles source code to the chosen IR |’
 Many DSLs by now #[nexus: :main]
« A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, ... | """ ..
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NP: class of languages that have proofs w
which can be verified in polynomial time

. _ n30
Think of n = 2 Read every bit

Accept/reject

2=26O

Even prover time n IS Impenetrable
We want verifier to be much faster than 2>
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X,w=ae€["

b =Enc(a) € |

V can toss random coins (hot
secure if V is deterministic)

e [1,/(n)] A~
bli] |

Accept/reject
based on queried bits

Key insight: allowing randomness

makes it much more efficient to verify!
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PCP[r(n), g(n)] - class of languages where proofs can be  jss (not '
verified by using r(n) verifier’s random bits and g(n) queries inistic)

PCP theorem: PCP[O(log 1), O(1)] = NP

e Celebrated as one of the most central theorems in
complexity theory

\ J
N\
\ ,

DB DD Known PCPs are quite inefficient Accept/reject

for the prover (proof length O(n log” n)) based on queried bits
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Key insight « => Use error-correcting codes
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e Collaboration questions:
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Interactive Oracle Proof
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X, W=2a & [ Random, unpredictable, independent

fl (X) — En C ( a) = |]:< [X] ﬁ from previous messages

Jx(X) =En : :
Key ideas: . .
III IIIII . . 3 1 instead of just n
e \/ can query polynomials at random points i
. e Since low-degree polynomials have few roots,
Key insight (tra

more powerful _ "andom evaluation = 0 == polynomial = 0 w.h.p

more efficient but implementing
the oracle is more costly

Accept/reject
based on

f(—l), randomizers and
o queried evaluations




Insufficiency

 PIOPs are idealized protocols



Insufficiency

 PIOPs are idealized protocols

* You need to trust that the oracles function correctly



Insufficiency

 PIOPs are idealized protocols
* You need to trust that the oracles function correctly

* The next step in zk-SNARK design: instantiating the boxes



Insufficiency

 PIOPs are idealized protocols
* You need to trust that the oracles function correctly
* The next step in zk-SNARK design: instantiating the boxes

* |nstantiating makes protocols less efficient
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 PIOPs are idealized protocols

* You need to trust that the oracles function correctly

* The next step in zk-SNARK design: instantiating the boxes
* |nstantiating makes protocols less efficient

e ... and also only computationally secure
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PCS: Real-life instantiation of the PIOP
black box

Security definitions of PCS, PIOP are
chosen so that combining a secure PCS

with a secure PIOP results in a secure
zk-SNARK

Efficiency depends both on the efficiency
of the PIOP and the PCS

PCS gives most of the structural flavour
to resulting zk-SNARKS:

e Security assumptions (post-quantum?)
* [Jrusted parameters

Security assumptions and trusted

parameters depend only on the VCS/PCS
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