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Brief Introduction

• Introduction to zero-knowledge and zk-SNARKs

• Goal: introduction, trying to sell the hype, collaboration

• Give an up-to-date overview of the area

• ZK field is wide, and there is a lot of collaborations possible

• Coding theory, ML, formal verification, …
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Motivation: Verifiable Computation

Private input: 𝗐

Computation : arbitrary computation of  steps

Public input: 

f ≤ 230

𝗑

𝗒 ← f(𝗑, 𝗐)
𝗑, f

Thank you! Here’s your $1000

I don’t trust this guy! I don’t 
want the computation to 

leak my private data

I don’t trust this guy! Is the 
output really correct or I 

was scammed?

• The whole currently popular ZK field could 
also be called “verifiable computation” since 
that is the driving application


• ZK is stuck as the “sexy” name

• ZK has other, more classical applications, like 

authentication, that currently get less attention

• Less money ☹…
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Computation: 

Public input (statement) 

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof  that π f(𝗑, 𝗐) = 𝗒

Proof can be interactive:

• Consist of several message back and forth
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Public input (statement) 

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Proof  that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts honest prover
• Knowledge Soundness: if honest verifier accepts, prover “knows"  𝗐
• Proof = knowledge-sound even if prover is omnipotent
• Argument = knowledge-sound only against polynomial-time provers

• Zero-Knowledge: nothing about the private input of honest prover is leaked
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Efficiency

Private input: 𝗐

Computation : arbitrary computation of  steps

Public input: 

f ≤ 230

𝗑

𝗑, f
𝗒 ← f(𝗑, 𝗐)

Thank you! Here’s your $1000

If verification of a zk-SNARK takes as much time as 
recomputing, the application is less interesting!

Argument  that π f(𝗑, 𝗐) = 𝗒

The cloud still preserves her privacy
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Zk-SNARKs

• Zero-knowledge succinct non-interactive arguments of knowledge
• Adds efficiency requirements to “just" ZK arguments:
• Argument should be much shorter than the computation description
• Ideally: constant or logarithmic in computation length n

• Verification should be much faster than the computation
• Ideally: constant or logarithmic

• Note: proofs cannot be succinct, but arguments can

• Scalability: verifying argument is significantly faster than recomputation

• Important in many applications

• even without privacy…  — a lot of what is called ZK is actually not ZK but VC
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Recall: Verifiable Computation

𝗑, f
𝗒 ← f(𝗑, 𝗐)

Argument  that π f(𝗑, 𝗐) = 𝗒

• Completeness: honest verifier accepts if prover knows  such that 

• Knowledge Soundness: if honest verifier accepts, prover knows  

• Zero-Knowledge: nothing about  is leaked

• Efficiency: verifying  should be much faster than redoing the computation

𝗐 f(𝗑, 𝗐) = 𝗒
𝗐

𝗐
π

Computation : arbitrary computation of  steps

Public input: 

f ≤ 230

𝗑
Private input: 𝗐
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State-of-the-Art

• Prover time ☹: up to 10000x overhead
• Depends on application and underlying cryptography
• But: sometimes can be only 10x (GKR with regular circuits)

• Memory cost ☹: usually linear in computation size
• Often the limitation
• Recent research improves on this — streaming zk-SNARKs

• Verifier time: milliseconds for arbitrary computation
• Concrete numbers depend on the construction
• There is often an explicit trade-off between prover’s and verifier’s time
• Very active research topic — prover overhead decreases each year

This number might be outdated
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Computation : computing transaction  from public info

Public input:  (public information on blockchain)

Private input: 

• transaction amount, payer account, payee account, …

f 𝗒
𝗑
𝗐

Computation: 

Public input: 

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument  that π f(𝗑, 𝗐) = 𝗒

• Completeness 
• Knowledge Soundness 

• Zero-Knowledge 
• Efficiency

• The main source of R&D at this moment

• Spending $50B on research can secure 

$2T money
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Application: zkML
Computation : inference was correct

Public input:  (public input)

Private input:  (model)

f
𝗑
𝗐

Computation: 

Public input: 

f
𝗑

𝗒 ← f(𝗑, 𝗐)

Argument  that π f(𝗑, 𝗐) = 𝗒

Or: model was trained correctly

• Completeness 
• Knowledge Soundness 

• Zero-Knowledge 
• Efficiency

• Fairness: the same 
model was used in all 
cases 
• Property loans, …

• Collaboration questions: 
• In which ML-related questions, ZK can 

help? 
• How does the low-level ML computation 

look like, can it be made more “ZK-
friendly”?
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Application: E-voting
Computation : tallying was correct

Public input:  (all incoming signed encrypted ballots)

Private input: ; who voted for who

f
𝗑
𝗐

Computation: 

Public input: 

f
𝗑

true ← f(𝗑, 𝗐)

Argument  that π f(𝗑, 𝗐) = true

• Completeness 
• Knowledge Soundness 

• Zero-Knowledge 
• Efficiency



Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F

x2 = F(x1, w1)



Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F

x2 = F(x1, w1) x3 = F(x2, w2)



Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3)



Incrementally Verifiable Computation

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)



Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/


Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/


Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)
• https://ethereum.org/en/developers/docs/evm/ 

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/


Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)
• https://ethereum.org/en/developers/docs/evm/ 

• Example application 2: RISC Zero (proving RISC V execution correctness)

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/


Incrementally Verifiable Computation

• Allows to perform proving piecewise, spreading the costs over time
• Example application 1: EVM (Ethereum Virtual Machine)
• https://ethereum.org/en/developers/docs/evm/ 

• Example application 2: RISC Zero (proving RISC V execution correctness)
• https://www.risczero.com/ 

𝗑1 𝗑2

π1

𝗐
1

F
𝗑3

π2

𝗐
2

F
𝗑4

π3

𝗐
3

F
𝗑5

π4

𝗐
4

F

x2 = F(x1, w1) x3 = F(x2, w2) x4 = F(x3, w3) x5 = F(x4, w4)

https://ethereum.org/en/developers/docs/evm/
https://www.risczero.com/


Current Machinery



The Current Machinery of ZK-SNARKs
Computation f



The Current Machinery of ZK-SNARKs

DSL

Intermediate RepresentationComputation f



The Current Machinery of ZK-SNARKs

DSL

Intermediate Representation

Cryptography

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Computation f



The Current Machinery of ZK-SNARKs

DSL

Intermediate Representation

Cryptography

ZK-SNARKs

03b534e609362ba4a414
B78a3bec1a8735c58721
A569d60350787f5f7511
66381ecd4f05e249dc4c
094a9d0d1cf605c9b2c1
717a011cb9401026af9c
B0d7b74802bc20533287

Computation f



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits
2. Formalise its verification as a few efficiently verifiable checks using a 

suitable “proof system”



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits
2. Formalise its verification as a few efficiently verifiable checks using a 

suitable “proof system”
• Crypto part:



Intermediate Representation

• Main philosophical question: we want to verify a computation is correct
• But what is a computation?
• IR in other contexts: bytecode, LLVM (language-independent IR), …
• IR in ZK: The goal is to verify a function, not to compute it
• IR: (1) a machine model + (2) how to verify its computation

1. Machine model: Turing machine, random access machine, circuits
2. Formalise its verification as a few efficiently verifiable checks using a 

suitable “proof system”
• Crypto part:
• implement the checks
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• Tradeoff between efficiencies of computation model and cryptographic checks
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Intermediate Representation

• Tradeoff between efficiencies of computation model and cryptographic checks
• Common solution 1: some variant of arithmetic circuits
• AIR (Arithmetic Intermediate Representation), Plonkish, R1CS, …
• Model is less efficient ☹
• Efficient verification 😀: verify each gate is correctly computed

• Common solution 2: implement a RISC processor instruction set
• Model much more efficient 😀
• Adding verification more costly ☹ (many ops are global)

• Verifying random memory access is costly, so many IRs avoid it
• However, model is efficient without such access

+ * +

+ *

*

x1 x2 x3 x4

y
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• The frontend DSL compiles source code to the chosen IR

• Many DSLs by now

• A short list: Cairo, Noir, gsnark, Halo2, Leo, Nexus, …

• Each has their own limitations


• Different from general purpose languages:

• “Verification", not "computation" languages

• Optimization depends on IR; certain operations are “unexpectedly” costly 


• DSLs change a lot, but are fun

• Learn one: then you see how big the intermediate interpretations can be

• And how efficient a SNARK you need


• Importantly, you do not have to sit down and write an IR for your task

• There are tools for it if you know a high-level programming language!

• Collaboration questions: 
• How to compile high-

level code efficiently to 
ZK IRs? 

• How to formally verify 
that compilation was 
correct? 

• Design etc of DSLs
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Usual Proof
𝗑, 𝗐 = a ∈ 𝔽n

a ∈ 𝔽n

Read every bit 
Accept/reject

Think of 

Even prover time  is impenetrable

We want verifier to be much faster than !

n = 230

n2 = 260

230

: class of languages that have proofs  
which can be verified in polynomial time
𝖭𝖯 𝗐

𝗑
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𝗑, 𝗐 = a ∈ 𝔽n

b = 𝖤𝗇𝖼(a) ∈ 𝔽ℓ(n)

Accept/reject 
based on queried bits

i ∈ [1,ℓ(n)]
b[i]

😭😭😭😭 Known PCPs are quite inefficient 
for the prover (proof length )O(n log4 n)

V can toss random coins (not 
secure if V is deterministic)

 - class of languages where proofs can be 
verified by using  verifier’s random bits and  queries

PCP theorem: 

• Celebrated as one of the most central theorems in 

complexity theory
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Interactive Oracle Proof (2016)
b1 = 𝖤𝗇𝖼1(a) ∈ 𝔽ℓ1(n)

r1 ∈ 𝔽
b2 = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽ℓ2(n)

r2 ∈ 𝔽

bK = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽ℓK(n)

i, j
bj[i]

Random, unpredictable, independent 
from previous messages

Key ideas:

• V can spot-check certain coordinates of the encodings

• For efficiency, need a tool to “smear" errors

• => Use error-correcting codes

𝗑, 𝗐 = a ∈ 𝔽n

• Collaboration questions: 
• Find good error-correcting codes 
• Find out which codes are 

needed… 
• Give input to cryptographers 

about known coding theory facts
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Polynomial Interactive Oracle Proof (2020)
f1(X) = 𝖤𝗇𝖼1(a) ∈ 𝔽≤n[X]

r1 ∈ 𝔽
f2(X) = 𝖤𝗇𝖼2(a, r1) ∈ 𝔽≤n[X]

r2 ∈ 𝔽

fK(X) = 𝖤𝗇𝖼K(a, r1, …, rK−1) ∈ 𝔽≤n[X]

i, j
fj(i)

Key insight (trade-off): allowing a 
more powerful oracle makes IOP 
more efficient but implementing 
the oracle is more costly

Random, unpredictable, independent 
from previous messages𝗑, 𝗐 = a ∈ 𝔽n

 possible queries  instead of just |𝔽 | i nKey ideas:

• V can query polynomials at random points

• Since low-degree polynomials have few roots, 

random evaluation = 0  polynomial = 0 w.h.p⟹
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Insufficiency

• PIOPs are idealized protocols

• You need to trust that the oracles function correctly

• The next step in zk-SNARK design: instantiating the boxes

• Instantiating makes protocols less efficient

• … and also only computationally secure
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We will not 
discuss FS today
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Vector And Polynomial Commitment Scheme
• VCS: Real-life instantiation of the IOP 

black box
• Security definitions of VCS, IOP are 

chosen so that combining a secure VCS 
with a secure IOP results in a secure zk-
SNARK

• Efficiency depends both on the efficiency 
of the IOP and the VCS

• VCS gives most of the structural flavour 
to resulting zk-SNARKs:
• Security assumptions (post-quantum?)
• Trusted parameters

💡Security assumptions and trusted 
parameters depend only on the VCS/PCS

• PCS: Real-life instantiation of the PIOP 
black box


• Security definitions of PCS, PIOP are 
chosen so that combining a secure PCS 
with a secure PIOP results in a secure 
zk-SNARK


• Efficiency depends both on the efficiency 
of the PIOP and the PCS


• PCS gives most of the structural flavour 
to resulting zk-SNARKs:

• Security assumptions (post-quantum?)

• Trusted parameters



Current Main "Cryptographic" Approaches

Assumption Post-
Quantum

Trusted 
para-

meters

Prover 
speed

Verifier speed Argument 
length

Examples

Pairing-
based PCS + 

PIOP

Various 
pairing-based 
(elliptic curve) 
assumptions

No Yes
O(n log n) 

heavy 
operations

Small constant 
number of heavy 
operations (a few 

milliseconds)

Very short

(<600 B for 

any 
computation)

Plonk, Marlin, 
Groth16, Polymath, 

Lunar, Basilisk, 
Vampire, Spartan, 

HyperPlonk, 
BabySpartan, ….

Hash-based 
VCS + IOP

A secure hash 
function 
(CRHF)

Yes Minimal
O(n log n) 
or even 

O(n) simple 
operations

Large number of 
simple operations
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