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Dependence logic

Single assignment 7→ Set of assignments

Employee Department Salary

Alice Math 50k
Bob CS 40k
Carol Physics 60k
David Math 80k

Salary depends on Employee but not on Department.

Team semantics provides a framework for analyzing more complex statements
involving dependencies.

Basic semantical unit is a set of entities (assignments, possible worlds, traces, ...)
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Concrete notions of dependence and independence

Dependence and independence occur in contexts such as:

▶ dependence of a move of a player in a game on some previous moves;

▶ dependence of an attribute of a database on other attributes;

▶ dependence/independence of a choice of an agent on choices of other agents;

▶ linear dependence/independence of a vector v of vectors v1, ..., vn;

▶ Independence of random variables X and Y ;

▶ dependence of an outcome an experiment e0 on the outcomes of e1, ..., en.

Expressing complex variable dependencies not possible in first-order logic
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First-order logic (FO)

First-order logic (FO) formed by closing atomic formulas (t = u,R(t⃗)) in terms of
connectives ¬,∨,∧ and quantifiers ∃,∀.

Considering a directed graph G with edge
relation E and root r

1. G |= ∀x¬E (x , r)

2. G ̸|= ∀x∃yE (x , y)

3. G |= ∀x∀y∀z(
E (x , y) ∧ E (y , z) → E (x , z)
)

r



FO: Limits of expressiveness

Consider the FO-formula
∀u∃v∀x∃yϕ

Variable dependence is transitive:

▶ v is in the scope of u

▶ y is in the scope of v

▶ =⇒ y is in the scope of u

Dependence relations between variables arise from quantification order!

Other limits: no counting, no recursion, captures only local properties
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Solutions I

Branching quantifiers (also called Henkin quantifiers) [Hen61]:(
∀x ∃y
∀u ∃v

)
ϕ (1)

read as:

for all x there is y that depends only on x,
and for all u there is v that depends only on u,

s.t. ϕ



Solutions II

Independence-friendly logic [HS89]:

∀x∃y∀u(∃v/x)ϕ

where (∃y/u) is read as:

there exists v independently of x



Solutions III

Dependence logic [V0̈7]:

∀x∃y∀u∃v(dep(u, v) ∧ ϕ)

where dep(x , y) is a dependence atom stating that v depends only on u



Example cont.

Consider a directed graph G with edge
relation E . Assume additional distinct
constants b, r . Then:

M is bipartite ⇐⇒ M |=
(

∀x ∃y
∀u ∃v

)
ϕ

⇐⇒ G |= ∀x∃y∀u(∃v/x)ϕ
⇐⇒ G |= ∀x∃y∀u∃v(dep(u, v) ∧ ϕ)

where:
ϕ = (y = b ∨ y = r) ∧ (x = u → y = v) ∧ (E (x , u) → ¬y = v)



From syntax to semantics?

First-order logic has both model-theoretic and game-theoretic semantics:

Model-theoretic semantics (Tarski, 1930s):

▶ Recursive definition of the satisfaction relation M |= ϕ (model M satisfies
formula ϕ)

▶ E.g., M |= ψ ∧ θ iff M |= ψ and M |= θ.

Game-theoretic semantics (Lorenzen, Hintikka, 1950s):

▶ Two players: Verifier and Falsifier
▶ Consider: ϕ = ∀x∃yE (x , y)

▶ Falsifier picks x
▶ Verifier picks y
▶ If E (x , y) holds, Verifier wins; otherwise Falsifier wins.
▶ ϕ is true iff Verifier has a winning strategy



From syntax to semantics with dependencies

Dependence/Independence-Friendly logic

Game-theoretic semantics:
▶ Consider ∀x∃y∀u(∃v/x)ϕ

▶ Imperfect information game
▶ Verifier should choose v independently x
▶ Formula is true if Verifiers has a winning strategy

Model-theoretic semantics:

▶ Found by Hodges (1990s)

▶ Next few slides: model-theoretic semantics of dependence logic



Dependence logic

Dependence logic, FO(dep(· · · )), defined via grammar:

ϕ ::= θ | dep(x⃗ , y) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ,

where θ is a literal (= atom or its negation).

NB. Negation pushed in front of first-order atoms

Next: Model-theoretic semantics for dependence logic



Team

Let A be a set and V = {x1, . . . , xk} a finite set of variables. A team X with domain
V is a set of assignments

s : V → A.

Intuition: data table with columns named as x1 . . . xn



Dependence atom

Let x⃗ be a tuple of variables, and y an variable. An expression dep(x⃗ , y) is called a
dependence atom. For a model M and X its team, we define:

M |=X dep(x⃗ , y) if for all s, s ′ ∈ X : s(x⃗) = s ′(x⃗) implies s(y) = s ′(y).
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Team Semantics: From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let M be a τ -model, and X its team. The satisfaction relation M |=X ϕ for
first-order literals and compound formulas is defined inductively as follows:

▶ For a literal ϕ, M |=X ϕ iff M |=s ϕ for all s ∈ X ;

▶ M |=s ϕ ∧ ψ iff M |=s ϕ and M |=s ψ;

▶ M |=s ϕ ∨ ψ iff M |=s ϕ or M |=s ψ;

▶ M |=s ∃xϕ iff there exists a ∈ Dom(M) such that M |=s(a/x) ϕ;

▶ M |=s ∀xϕ iff for all a ∈ Dom(M), M |=s(a/x) ϕ.
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number position nationality name

1 GK BEL Courtois
2 DF SPA Carvajal
22 DF GER Rüdiger
6 DF SPA Nacho
23 DF FRA Mendy
15 MF URU Valverde
12 MF FRA Camavinga
8 MF GER Kroos
5 MF ENG Bellingham
11 FW BRA Rodrygo
7 FW BRA Vini Jr.

M |=X position = FW → nationality = BRA

NB. ¬ is not the classical negation (which is usually denoted by ∼ in team semantics)
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From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let M be a τ -model, and X its team. The satisfaction relation M |=X ϕ for any
negation-normal form first-order formula ϕ is defined inductively as follows:

▶ For a literal ϕ, M |=X ϕ iff M |=s ϕ for all s ∈ X ;

▶ M |=X ϕ ∧ ψ iff M |=X ϕ and M |=X ψ;

▶ M |=X ϕ∨ψ iff there are Y ,Z ⊆ X , Y ∪Z = X , s.t. M |=Y ϕ and M |=Z ψ;

▶ M |=s ∃xϕ iff there exists a ∈ Dom(M) such that M |=s(a/x) ϕ;

▶ M |=s ∀xϕ iff for all a ∈ Dom(M), M |=s(a/x) ϕ.
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Team Semantics: existential quantification

M |=X ∃xϕ if M |=X [F/x] ϕ for some F : X → P(Dom(M)) \ {∅},

where X [F/x ] := {s(a/x) | a ∈ F (s)}.
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where X [A/x ] := {s(a/x) | a ∈ A}.
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Connections

Dependence logic can be used to formalize reasoning about statements related to data
(outcomes of experiments, voting profiles, databases):

▶ No-Go theorems (e.g., Bell’s theorem) in quantum mechanics [APV24, AG22]

▶ Arrow’s theorem in social choice [PY16]

▶ Logical implication for database dependencies [H. and Kontinen, 2016]



Limits of formal reasoning

First-order logic has a tight connection between syntax and semantics

Gödel’s completeness theorem (1929). The following are equivalent for a first-order
logic formula ϕ:

1. ϕ is valid (true in all structures)

2. ϕ has a finite formal deduction



Transferring rules

The following rules hold true in first-order logic:

▶ If ϕ ∨ ϕ, then ϕ
▶ If (ϕ ∧ ψ) ∨ (ϕ ∧ θ), then ϕ ∧ (ψ ∨ θ)
▶ If (ϕ ∨ ψ) ∧ (ϕ ∨ θ), then ϕ ∨ (ψ ∧ θ)
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Limits of formal reasoning cont.

Dependence logic does not have as tight a connection between syntax and semantics

The following are not equivalent for a dependence logic formula ϕ:

1. ϕ is valid (true in all structures)

2. ϕ has a finite formal deduction

Reason. Not possible to enumerate all valid formulas ϕ by a computer program. In
contrast, a formal deduction system gives rise to such a program.



Limited formal reasoning

It is possible to create a formal deduction system that is sound and complete w.r.t. the
following logical consequence relation:

T |= ψ /T implies ψ

where

▶ T is a set of dependence logic formulas

▶ ψ is a first-order logic formula

Such systems created in [KV13], [H. 15]



What can be expressed in dependence logic?

Those properties of teams (=data) that are closed downwards and definable in
existential second-order logic (ESO):

▶ obtained by adding to a first-order logic formula ϕ a prefix of existentially
quantified relations: ∃R1 . . . ∃Rnϕ

Example (Bipartiteness revisited)

Graph G with edge relation E is bipartite iff G |= ∃P∃Q∀x∀yθ, where θ is a
conjunction of

▶ P(x) ∨ Q(x)

▶ ¬P(x) ∨ ¬Q(x)

▶ (P(x) ∧ Q(y)) → ¬E (x , y)



Fagin’s theorem

Non-deterministic polynomial time (NP) consists of all those problems that are
solvable in polynomial-time by non-deterministic computation.

Theorem ([Fag74])

A class of finite structures can be recognized in NP if and only if it can be described in
existential second-order logic.

Consequence: descriptive power of dependence logic ≈ computational power of NP



Side note: descriptive complexity

▶ Fagin’s theorem led to development of
descriptive complexity

▶ Idea is to find correspondencies between:
▶ computational complexity classes
▶ descriptive logical languages

▶ Examples:
▶ ESO = NP
▶ full second-order logic = polynomial-time

hierarchy

▶ Open question. Is there a logic L such that

L= PTIME



Descriptive complexity of dependence logic(s)

Different variants of dependence logic obtained by combining:

▶ Logical connectives and quantifiers

▶ Notions of dependence and independence

Recall: FO formed using ¬,∧,∨, ∃, ∀
▶ Dependence logic: FO+ dep(x , y) ≤ NP

▶ Independence logic: FO+ y⊥xz = NP [GV13]

▶ Inclusion logic: FO+ x ⊆ y ≤ PTIME [GH13]

▶ . . .
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Complexity of Modal Logics in Team Semantics

Logic SAT VAL MC

ML PSPACE (Lad77) PSPACE (Lad77) P (CES86, Sch02)

ML(⊆) EXPTIME (HKMV15) coNEXPTIME-hard (HKMV17) P (HKMV17)

ML(dep(·)) NEXPTIME (Sev09) NEXPTIME (Virtema 14, H. 17) NP (EbLo12)

ML(⊥) NEXPTIME (KMSV17) coNEXPTIMENP-hard (H. 19) NP (KMSV17)

ML(∼) TOWER(poly) (Lüc18) TOWER(poly) (Lüc18) PSPACE (Mül14)

TOWER(poly): computation time 2n
nn

...
n

︸ ︷︷ ︸
po
ly with a polynomial upper bound for the

exponent tower height



Complexity of Modal Logics in Team Semantics

Logic SAT VAL MC

ML PSPACE (Lad77) PSPACE (Lad77) P (CES86, Sch02)

ML(⊆) EXPTIME (HKMV15) coNEXPTIME-hard (HKMV17) P (HKMV17)

ML(dep(·)) NEXPTIME (Sev09) NEXPTIME (Virtema 14, H. 17) NP (EbLo12)

ML(⊥) NEXPTIME (KMSV17) coNEXPTIMENP-hard (H. 19) NP (KMSV17)

ML(∼) TOWER(poly) (Lüc18) TOWER(poly) (Lüc18) PSPACE (Mül14)

PL(∼) AEXPTIME(poly) (HKVV18) AEXPTIME(poly) (HKVV18) PSPACE (Mül14)

Interestingly, in many cases hardness holds already for the propositional frangment.

TOWER(poly): computation time 2n
nn

...
n

︸ ︷︷ ︸
po
ly with a polynomial upper bound for the

exponent tower height



Quantitative versions I

Dependence logic models relational but not quantitative notions of dependence

Logics of quantitative dependence (such as probabilistic independence) require
extension of semantics:

x y z #

a b c 2
a b d 1
b a c 1
b a d 1

−→ Multiteam semantics [Durand, H. et al. 18]



Quantitative versions II

Dependence logic models relational but not quantitative notions of dependence

Logics of quantitative dependence (such as probabilistic independence) require
extension of semantics:

x y z Prob

a b c 2
5

a b d 1
5

b a c 1
5

b a d 1
5

−→ Probabilistic team semantics [H. et al., 18, 20, 22]



Quantitative versions III

All versions of team semantics unified by assuming a generic number domain K , such
as a positive semiring (R≥0,N,B, . . . )

x y z K

a b c k1
a b d k2
b a c k3
b a d k4

−→ Semiring team semantics [Barlag, H. et al., 23]

Example: the so-called semi-graphoid axioms of conditional independence are sound in
most semirings [H. 2024]



Conclusion

Dependence logic:

▶ How dependencies and logic interact?

▶ Tool for the study of more complex dependence relations
▶ A vehicle for uncovering and unifying the mathematics of dependence in a variety

of contexts:
▶ Databases
▶ Probability theory
▶ Social choice theory
▶ Quantum physics
▶ . . .



References I
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