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Dependence logic

Single assignment — Set of assignments

Employee ‘Department‘ Salary

Alice Math 50k
Bob CS 40k
Carol Physics 60k
David Math 80k

Salary depends on Employee but not on Department.

Team semantics provides a framework for analyzing more complex statements
involving dependencies.

Basic semantical unit is a set of entities (assignments, possible worlds, traces, ...)
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Concrete notions of dependence and independence

Dependence and independence occur in contexts such as:
» dependence of a move of a player in a game on some previous moves;
dependence of an attribute of a database on other attributes;

dependence/independence of a choice of an agent on choices of other agents;

>
>
» linear dependence/independence of a vector v of vectors vy, ..., vp;
» Independence of random variables X and Y;

>

dependence of an outcome an experiment ey on the outcomes of ey, ..., e,.

Expressing complex variable dependencies not possible in first-order logic



First-order logic (FO)

First-order logic (FO) formed by closing atomic formulas (t = u, R(t)) in terms of
connectives —, V, A and quantifiers 3,V.

Considering a directed graph G with edge
relation E and root r

1. G =Vx—E(x,r)
2. G EVx3IyE(x,y)

3. G = VxVyVz(
E(x,y)NE(y,z) = E(x,2)



FO: Limits of expressiveness

Consider the FO-formula

Variable dependence is transitive:

» v is in the scope of u
» y isin the scope of v

» — vy isin the scope of u

YudvVx3dy ¢



FO: Limits of expressiveness

Consider the FO-formula
YudvVx3dy ¢

Variable dependence is transitive:

» v is in the scope of u
» y isin the scope of v

» — vy isin the scope of u

Dependence relations between variables arise from quantification order!

Other limits: no counting, no recursion, captures only local properties



Solutions |

Branching quantifiers (also called Henkin quantifiers) [Hen61]:
Vx dy
( Yu v ) ¢

for all x there is y that depends only on x,

read as:

and for all u there is v that depends only on u,

s.t. ¢



Solutions I

Independence-friendly logic [HS89]:

Vx3yVu(3v/x)p
where (Jy/u) is read as:

there exists v independently of x



Solutions I

Dependence logic [VO7]:
Vx3yVudv(dep(u, v) A @)

where dep(x, y) is a dependence atom stating that v depends only on u



Example cont.

Consider a directed graph G with edge
relation E. Assume additional distinct
constants b, r. Then:

M is bipartite <= M | ( :z gi ) o

<= G = Vx3yVu(3v/x)¢
<= G = Vx3JyVudv(dep(u, v) A ¢)

where:
p=(y=bVy=r)Ax=u—y=v)A(E(x,u) = -y =v)



From syntax to semantics?

First-order logic has both model-theoretic and game-theoretic semantics:

Model-theoretic semantics (Tarski, 1930s):
» Recursive definition of the satisfaction relation M = ¢ (model M satisfies
formula ¢)

> Eg, MpEyAOffMEpand M 6.

Game-theoretic semantics (Lorenzen, Hintikka, 1950s):

> Two players: Verifier and Falsifier
» Consider: ¢ = Vx3yE(x,y)
» Falsifier picks x
» Verifier picks y
> If E(x,y) holds, Verifier wins; otherwise Falsifier wins.
» ¢ is true iff Verifier has a winning strategy



From syntax to semantics with dependencies

Dependence/Independence-Friendly logic

Game-theoretic semantics:
» Consider Vx3yVu(3v/x)¢

» Imperfect information game
» Verifier should choose v independently x
» Formula is true if Verifiers has a winning strategy

Model-theoretic semantics:
» Found by Hodges (1990s)

» Next few slides: model-theoretic semantics of dependence logic



Dependence logic

Dependence logic, FO(dep(---)), defined via grammar:

¢ ==0]dep(X,y) [ ¢ NG| PV ¢|IxP | Vxo,

where 6 is a literal (= atom or its negation).
NB. Negation pushed in front of first-order atoms

Next: Model-theoretic semantics for dependence logic



Team

Let A be asetand V = {x1,...,x} a finite set of variables. A team X with domain
V is a set of assignments

s: V- A

Intuition: data table with columns named as x7 ... x,



Dependence atom

Let X be a tuple of variables, and y an variable. An expression dep(X,y) is called a
dependence atom. For a model M and X its team, we define:

M [=x dep(X,y) if for all s,s" € X : 5(X) = s'(X) implies s(y) = s'(y).
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Dependence atom

Let X be a tuple of variables, and y an variable. An expression dep(X,y) is called a
dependence atom. For a model M and X its team, we define:

M f=x dep(X,y) if for all s,s" € X : s(X) = s'(X) implies s(y) = s'(y).

dep(x, y)
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Team Semantics: From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let M be a 7-model, and X its team. The satisfaction relation M |=x ¢ for
first-order literals and compound formulas is defined inductively as follows:

» For a literal ¢, M =x ¢ iff M =5 ¢ forall s € X;
>

| 2
| 2
>
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Definition (Team Semantics [Hod97])

Let M be a 7-model, and X its team. The satisfaction relation M [=x ¢ for any
negation-normal form first-order formula ¢ is defined inductively as follows:

» For a literal ¢, M =x ¢ iff M = ¢ forall s € X;

> MEx oAy iff MEx ¢and M Ex 9,
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number position nationality name

1 GK BEL Courtois
2 DF SPA Carvajal
22 DF GER Ridiger
6 DF SPA Nacho
23 DF FRA Mendy
15 MF URU Valverde
12 MF FRA Camavinga
8 MF GER Kroos

5 MF ENG Bellingham
11 FW BRA Rodrygo
7 FW BRA Vini Jr.
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number position nationality name

1 GK BEL Courtois
2 DF SPA Carvajal
22 DF GER Riidiger
6 DF SPA Nacho
23 DF FRA Mendy
15 MF URU Valverde
12 MF FRA Camavinga
8 MF GER Kroos

5 MF ENG Bellingham
11 FW BRA Rodrygo
7 FW BRA Vini Jr.

M [=x (nationality = SPA — position = DF)A
~(position = DF — nationality = SPA)

NB. — is not the classical negation (which is usually denoted by ~ in team semantics)
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Team Semantics: existential quantification

M x Ix¢ if M Exip/x ¢ for some F : X — P(Dom(M)) \ {0},
where X[F/x] := {s(a/x) | a € F(s)}.
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From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let M be a 7-model, and X its team. The satisfaction relation M [=x ¢ for any
negation-normal form first-order formula ¢ is defined inductively as follows:

» For a literal ¢, M Ex ¢ iff M s ¢ forall s € X;
> MEx oAy iff MEx¢and M Ex 1,
> MEx ¢V iff thereare Y, ZC X, YUZ=X,st. My ¢ and M =7 1,
> M Ex Ix¢ iff there exists F : X — P(Dom(M)) \ {0} such that
M Ex(F/x ¢
> Mx Vx¢ iff M ExpDoma)/x] ¢



Team Semantics: universal quantification

M Ex Vx¢ if M Ex[Dom(M)/x] b
where X[A/x] := {s(a/x) | a € A}.
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Connections

Dependence logic can be used to formalize reasoning about statements related to data
(outcomes of experiments, voting profiles, databases):

» No-Go theorems (e.g., Bell's theorem) in quantum mechanics [APV24, AG22]
» Arrow’s theorem in social choice [PY16]

» Logical implication for database dependencies [H. and Kontinen, 2016]



Limits of formal reasoning

First-order logic has a tight connection between syntax and semantics

Godel’s completeness theorem (1929). The following are equivalent for a first-order
logic formula ¢:

1. ¢ is valid (true in all structures)

2. ¢ has a finite formal deduction



Transferring rules

The following rules hold true in first-order logic:
> If ¢V ¢, then ¢
> If (¢ AY)V (dAB), then ¢ A (¢ V 0)
> If (p V) A(pVE0), then ¢V (Y A6)



Transferring rules

The following rules hold true in first-order logic:
> If ¢V ¢, then ¢
> If (pAY)V () AB), then ¢ A (V)
> If (¢ V) A (d V), then ¢V (Y A D)

These rules do not hold in dependence logic



Limits of formal reasoning cont.

Dependence logic does not have as tight a connection between syntax and semantics

The following are not equivalent for a dependence logic formula ¢:
1. ¢ is valid (true in all structures)

2. ¢ has a finite formal deduction

Reason. Not possible to enumerate all valid formulas ¢ by a computer program. In
contrast, a formal deduction system gives rise to such a program.



Limited formal reasoning

It is possible to create a formal deduction system that is sound and complete w.r.t. the
following logical consequence relation:

TEY /T implies 1)
where
> T is a set of dependence logic formulas

P> 1 is a first-order logic formula

Such systems created in [KV13], [H. 15]



What can be expressed in dependence logic?

Those properties of teams (=data) that are closed downwards and definable in
existential second-order logic (ESO):

» obtained by adding to a first-order logic formula ¢ a prefix of existentially
quantified relations: 3Ry ...3R,¢

Example (Bipartiteness revisited)

Graph G with edge relation E is bipartite iff G = IPIQVxVy60, where 0 is a
conjunction of

> P(x)V Q(x)
> —P(x) V=Q(x)
> (P(x) A Q(y)) = —~E(x,y)



Fagin's theorem

Non-deterministic polynomial time (NP) consists of all those problems that are
solvable in polynomial-time by non-deterministic computation.

Theorem ([Fag74])

A class of finite structures can be recognized in NP if and only if it can be described in
existential second-order logic.

Consequence: descriptive power of dependence logic ~ computational power of NP



Side note: descriptive complexity

GRADUATE TEXTS IN COMPUTER SCIENCE

» Fagin's theorem led to development of
descriptive complexity

» lIdea is to find correspondencies between:

Primitive Recursive

» computational complexity classes
» descriptive logical languages

EXPTIME SOLFP)
PSPACE___FOPIP)__ SO(IC)

» Examples:
> ESO = NP

» full second-order logic = polynomial-time ; P :

hierarchy 4,."' e

e, NC
| AC' _Logarithiic-Time Hicrarchy 10

P roLrn

» Open question. Is there a logic L such that

L= PTIME




Descriptive complexity of dependence logic(s)

Different variants of dependence logic obtained by combining:
» Logical connectives and quantifiers
» Notions of dependence and independence

Recall: FO formed using =, A, V, 3,V
» Dependence logic: FO + dep(x,y) < NP
» Independence logic: FO + y 1,z = NP [GV13]
» Inclusion logic: FO + x C y < PTIME [GH13]
> ...



General timeline

1960 | 1990

2000

2005

2010

2015

2020

DHa



Complexity of Modal Logics in Team Semantics

Logic SAT VAL MC
ML PSPACE (Ladr7) PSPACE (Ladr7) P (cEsss, scho2)
ML(C) EXPTIME (Hkmvis) coNEXPTIME-hard (Hkmvi7) P (kmviz)
ML(dep( ) NEXPTIME (sev09) NEXPTIME (virtema 14, H. 17) NP (ebLoi2)
ML(L) NEXPTIME wmsviy  coNEXPTIMEN -hard .19 NP (kmsvir)
ML(~) TOWER(poly) (ics) TOWER(poly) (ics) PSPACE (miia)

TOWER(poly): computation time 2”% with a polynomial upper bound for the
exponent tower height



Complexity of Modal Logics in Team Semantics

Logic SAT VAL MC
ML PSPACE (Ladrr) PSPACE (Lairr) P (cesss, scho2)
ML(Q) EXPTIME (hkmvis) coNEXPTIME-hard (Hkmvir) P (Hkmvir)
ML(dep(+)) NEXPTIME (sev00) NEXPTIME (virtema 14, H. 17) NP (ebLo12)
ML(L) NEXPTIME (xmsvi7) coNEXPTIMEN -hard (1199 NP (kmsvar)
ML(~) TOWER(poly) (Lics) TOWER(poly) (ics) PSPACE (miis)
PL(~) AEXPTIME(poly) (kvvis) AEXPTIME(poly) (Hkvvis) PSPACE (miis)

Interestingly, in many cases hardness holds already for the propositional frangment.

n

TOWER(poly): computation time 2”% with a polynomial upper bound for the
exponent tower height



Quantitative versions |

Dependence logic models relational but not quantitative notions of dependence

Logics of quantitative dependence (such as probabilistic independence) require
extension of semantics:

N

7
2
1
1
1

o T oL w
L VT U <
o 0 a0

— Multiteam semantics [Durand, H. et al. 18]



Quantitative versions |l

Dependence logic models relational but not quantitative notions of dependence

Logics of quantitative dependence (such as probabilistic independence) require
extension of semantics:

X y z ‘ Prob

a b ¢ 2
3

a b d :

b a ¢ §

b a d 5

— Probabilistic team semantics [H. et al., 18, 20, 22]



Quantitative versions |

All versions of team semantics unified by assuming a generic number domain K, such
as a positive semiring (R>o,N, B, ...)

X y z ‘ K
a b c|k
a b d| k
b a ¢ k3
b a d k4

— Semiring team semantics [Barlag, H. et al., 23]

Example: the so-called semi-graphoid axioms of conditional independence are sound in
most semirings [H. 2024]



Conclusion

Dependence logic:
» How dependencies and logic interact?

» Tool for the study of more complex dependence relations

» A vehicle for uncovering and unifying the mathematics of dependence in a variety
of contexts:

» Databases

> Probability theory
» Social choice theory
» Quantum physics
>
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