Miika Hannula

University of Tartu

January 21, 2025

"x is the square root of y"

"x is a prime"

"node x is connected to node y"

"x depends on y"

"x is the square root of y"

"x is a prime"

"node x is connected to node y"

"x depends on y"

Single assignment \mapsto Set of assignments

	Development	Q = 1 =
Employee	Department	Salary
Alice	Math	50k
Bob	CS	40k
Carol	Physics	60k
David	Math	80k

Salary depends on Employee but not on Department.

Team semantics provides a framework for analyzing more complex statements involving dependencies.

Basic semantical unit is a set of entities (assignments, possible worlds, traces, ...)

Single assignment \mapsto Set of assignments

Employee	Department	Salary
Alice	Math	50k
Bob	CS	40k
Carol	Physics	60k
David	Math	80k

Salary depends on Employee but not on Department.

Team semantics provides a framework for analyzing more complex statements involving dependencies.

Basic semantical unit is a set of entities (assignments, possible worlds, traces, ...)

Single assignment \mapsto Set of assignments

Employee	Department	Salary
Alice	Math	50k
Bob	CS	40k
Carol	Physics	60k
David	Math	80k

Salary depends on Employee but not on Department.

Team semantics provides a framework for analyzing more complex statements involving dependencies.

Basic semantical unit is a set of entities (assignments, possible worlds, traces, …)

Single assignment \mapsto Set of assignments

Employee	Department	Salary
Alice	Math	50k
Bob	CS	40k
Carol	Physics	60k
David	Math	80k

Salary depends on Employee but not on Department.

Team semantics provides a framework for analyzing more complex statements involving dependencies.

Basic semantical unit is a set of entities (assignments, possible worlds, traces, ...)

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- ▶ Independence of random variables *X* and *Y*;
- dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- ▶ Independence of random variables *X* and *Y*;
- dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- ▶ Independence of random variables *X* and *Y*;
- dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- ▶ Independence of random variables *X* and *Y*;
- dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- Independence of random variables X and Y;
- dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- Independence of random variables X and Y;

• dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Dependence and independence occur in contexts such as:

- dependence of a move of a player in a game on some previous moves;
- dependence of an attribute of a database on other attributes;
- dependence/independence of a choice of an agent on choices of other agents;
- linear dependence/independence of a vector v of vectors $v_1, ..., v_n$;
- Independence of random variables X and Y;
- dependence of an outcome an experiment e_0 on the outcomes of $e_1, ..., e_n$.

First-order logic (FO)

First-order logic (FO) formed by closing atomic formulas $(t = u, R(\vec{t}))$ in terms of connectives \neg, \lor, \land and quantifiers \exists, \forall .

Considering a directed graph G with edge relation E and root r

- 1. $G \models \forall x \neg E(x, r)$
- 2. $G \not\models \forall x \exists y E(x, y)$
- 3. $G \models \forall x \forall y \forall z (E(x, y) \land E(y, z) \rightarrow E(x, z))$



FO: Limits of expressiveness

Consider the $\operatorname{FO}\xspace$ formula

 $\forall u \exists v \forall x \exists y \phi$

Variable dependence is transitive:

- \triangleright v is in the scope of u
- \triangleright y is in the scope of v
- $\blacktriangleright \implies y$ is in the scope of u

Dependence relations between variables arise from quantification order!

Other limits: no counting, no recursion, captures only local properties

FO: Limits of expressiveness

Consider the FO -formula

 $\forall u \exists v \forall x \exists y \phi$

Variable dependence is transitive:

- \triangleright v is in the scope of u
- \triangleright y is in the scope of v
- $\blacktriangleright \implies y$ is in the scope of u

Dependence relations between variables arise from quantification order!

Other limits: no counting, no recursion, captures only local properties

Solutions I

Branching quantifiers (also called Henkin quantifiers) [Hen61]:

$$\begin{pmatrix} \forall \mathbf{x} & \exists \mathbf{y} \\ \forall \mathbf{u} & \exists \mathbf{v} \end{pmatrix} \phi$$
 (1)

read as:

for all x there is y that depends only on x, and for all u there is v that depends only on u, s.t. ϕ

Solutions II

Independence-friendly logic [HS89]:

 $\forall x \exists y \forall u (\exists v / x) \phi$

where $(\exists y/u)$ is read as:

there exists v independently of x

Dependence logic [VÖ7]:

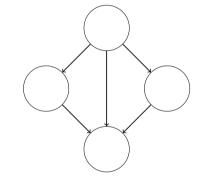
$\forall x \exists y \forall u \exists v (dep(u, v) \land \phi)$

where dep(x, y) is a dependence atom stating that v depends only on u

Example cont.

Consider a directed graph G with edge relation E. Assume additional distinct constants b, r. Then:

$$\mathcal{M} \text{ is bipartite } \iff \mathcal{M} \models \begin{pmatrix} \forall x & \exists y \\ \forall u & \exists v \end{pmatrix} \phi$$
$$\iff G \models \forall x \exists y \forall u (\exists v/x) \phi$$
$$\iff G \models \forall x \exists y \forall u \exists v (\operatorname{dep}(u, v) \land \phi)$$



where:

$$\phi = (y = b \lor y = r) \land (x = u \rightarrow y = v) \land (E(x, u) \rightarrow \neg y = v)$$

From syntax to semantics?

First-order logic has both model-theoretic and game-theoretic semantics:

Model-theoretic semantics (Tarski, 1930s):

Recursive definition of the satisfaction relation *M* ⊨ φ (model *M* satisfies formula φ)

• E.g.,
$$\mathcal{M} \models \psi \land \theta$$
 iff $\mathcal{M} \models \psi$ and $\mathcal{M} \models \theta$.

Game-theoretic semantics (Lorenzen, Hintikka, 1950s):

- Two players: Verifier and Falsifier
- Consider: $\phi = \forall x \exists y E(x, y)$
 - Falsifier picks x
 - Verifier picks y
 - If E(x, y) holds, Verifier wins; otherwise Falsifier wins.
 - ϕ is true iff Verifier has a winning strategy

From syntax to semantics with dependencies

Dependence/Independence-Friendly logic

Game-theoretic semantics:

- Consider $\forall x \exists y \forall u (\exists v/x) \phi$
 - Imperfect information game
 - Verifier should choose v independently x
 - Formula is true if Verifiers has a winning strategy

Model-theoretic semantics:

- Found by Hodges (1990s)
- Next few slides: model-theoretic semantics of dependence logic

Dependence logic, $FO(dep(\cdots))$, defined via grammar:

 $\phi ::= \theta \mid \operatorname{dep}(\vec{x}, y) \mid \phi \land \phi \mid \phi \lor \phi \mid \exists x \phi \mid \forall x \phi,$

where θ is a literal (= atom or its negation).

NB. Negation pushed in front of first-order atoms

Next: Model-theoretic semantics for dependence logic

Team

Let A be a set and $V = \{x_1, \ldots, x_k\}$ a finite set of variables. A team X with domain V is a set of assignments

$$s: V \to A.$$

・ロト・日本・ヨト・ヨー うへで

Intuition: data table with columns named as $x_1 \dots x_n$

Let \vec{x} be a tuple of variables, and y an variable. An expression dep (\vec{x}, y) is called a dependence atom. For a model \mathcal{M} and X its team, we define:

 $\mathcal{M} \models_X \operatorname{dep}(\vec{x}, y)$ if for all $s, s' \in X : s(\vec{x}) = s'(\vec{x})$ implies s(y) = s'(y).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Dependence atom

Let \vec{x} be a tuple of variables, and y an variable. An expression $dep(\vec{x}, y)$ is called a dependence atom. For a model \mathcal{M} and X its team, we define:

$$\mathcal{M} \models_X \operatorname{dep}(\vec{x}, y)$$
 if for all $s, s' \in X : s(\vec{x}) = s'(\vec{x})$ implies $s(y) = s'(y)$.

	X	У
	1	2
1 ()	2	3
dep(x, y)	2	4
	3	3
	3	4
	4	1

Dependence atom

Let \vec{x} be a tuple of variables, and y an variable. An expression $dep(\vec{x}, y)$ is called a dependence atom. For a model \mathcal{M} and X its team, we define:

$$\mathcal{M} \models_X \operatorname{dep}(\vec{x}, y)$$
 if for all $s, s' \in X : s(\vec{x}) = s'(\vec{x})$ implies $s(y) = s'(y)$.

	x	У
	1	2
1 ()	2	3
dep(x, y)	2	4
	3	3
	3	4
	4	1

Team Semantics: From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for first-order literals and compound formulas is defined inductively as follows:

▶ For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \mathcal{M} \models_{s} \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_{s} \phi \text{ and } \mathcal{M} \models_{s} \psi;$$

$$\blacktriangleright \mathcal{M} \models_{s} \phi \lor \psi \quad \text{iff} \quad \mathcal{M} \models_{s} \phi \text{ or } \mathcal{M} \models_{s} \psi;$$

• $\mathcal{M} \models_s \exists x \phi$ iff there exists $a \in \text{Dom}(\mathcal{M})$ such that $\mathcal{M} \models_{s(a/x)} \phi$;

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• $\mathcal{M} \models_s \forall x \phi$ iff for all $a \in \text{Dom}(\mathcal{M})$, $\mathcal{M} \models_{s(a/x)} \phi$.

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for any negation-normal form first-order formula ϕ is defined inductively as follows:

▶ For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \mathcal{M} \models_X \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_X \phi \text{ and } \mathcal{M} \models_X \psi;$$

 $\blacktriangleright \mathcal{M} \models_{s} \phi \lor \psi \quad \text{iff} \quad \mathcal{M} \models_{s} \phi \text{ or } \mathcal{M} \models_{s} \psi;$

• $\mathcal{M} \models_s \exists x \phi$ iff there exists $a \in \text{Dom}(\mathcal{M})$ such that $\mathcal{M} \models_{s(a/x)} \phi$;

• $\mathcal{M} \models_s \forall x \phi$ iff for all $a \in \text{Dom}(\mathcal{M})$, $\mathcal{M} \models_{s(a/x)} \phi$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for any negation-normal form first-order formula ϕ is defined inductively as follows:

For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \ \mathcal{M} \models_X \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_X \phi \text{ and } \mathcal{M} \models_X \psi;$$

 $\blacktriangleright \ \mathcal{M}\models_{X}\phi\lor\psi \quad \text{iff} \quad \text{there are } Y,Z\subseteq X,\ Y\cup Z=X,\ \text{s.t.}\ \mathcal{M}\models_{Y}\phi \text{ and } \mathcal{M}\models_{Z}\psi;$

• $\mathcal{M} \models_s \exists x \phi$ iff there exists $a \in \text{Dom}(\mathcal{M})$ such that $\mathcal{M} \models_{s(a/x)} \phi$;

 $\blacktriangleright \mathcal{M} \models_{s} \forall x \phi \quad \text{iff} \quad \text{for all } a \in \text{Dom}(\mathcal{M}), \ \mathcal{M} \models_{s(a/x)} \phi.$

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{M} \models_{X} \texttt{position} = FW \rightarrow \texttt{nationality} = BRA$

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

$$\mathcal{M} \models_X \neg \texttt{position} = FW \lor \texttt{nationality} = BRA$$

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

<□> <0</p>

 $\mathcal{M} \models_{X} \neg \texttt{position} = FW \lor \texttt{nationality} = BRA$

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

 $\mathcal{M}\models_X \texttt{position} = \mathit{GK} o \operatorname{dep}(\emptyset, (\texttt{number, nationality, name}))$

1

¹dep(\emptyset , (number, nationality, name)): number, nationality, name depend on the empty sequence (i.e., are constant)

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

 $\mathcal{M}\models_X \neg \texttt{position} = \mathcal{GK} \lor \operatorname{dep}(\emptyset, (\texttt{number, nationality, name}))$

1

¹dep(\emptyset , (number, nationality, name)): number, nationality, name depend on the empty sequence (i.e., are constant)

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

 $\mathcal{M} \models_{\boldsymbol{X}} \neg \texttt{position} = \textit{GK} \lor \operatorname{dep}(\emptyset, (\texttt{number}, \texttt{nationality}, \texttt{name}))$

1

¹dep(\emptyset , (number, nationality, name)): number, nationality, name depend on the empty sequence (i.e., are constant)

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

$$\mathcal{M}
ot \models_X (ext{nationality} = SPA ot ext{ position} = DF) \land
ext{ }
e$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

$$\mathcal{M}
ot \models_X (\neg ext{nationality} = SPA \lor ext{position} = DF) \land \
egt(\neg ext{position} = DF \lor ext{nationality} = SPA)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\mathcal{M}
ot \models_X (\neg \texttt{nationality} = SPA \lor \texttt{position} = DF) \land (\texttt{position} = DF \land \neg \texttt{nationality} = SPA)$$

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $\mathcal{M} \not\models_{\mathbf{X}} (\neg \text{nationality} = SPA \lor \text{position} = DF) \land \\ \text{position} = DF \land \neg \text{nationality} = SPA$

number	position	nationality	name
1	GK	BEL	Courtois
2	DF	SPA	Carvajal
22	DF	GER	Rüdiger
6	DF	SPA	Nacho
23	DF	FRA	Mendy
15	MF	URU	Valverde
12	MF	FRA	Camavinga
8	MF	GER	Kroos
5	MF	ENG	Bellingham
11	FW	BRA	Rodrygo
7	FW	BRA	Vini Jr.

$$\mathcal{M}\models_X (ext{nationality}=SPA o ext{position}=DF) \wedge \ \sim (ext{position}=DF o ext{nationality}=SPA)$$

NB. \neg is not the classical negation (which is usually denoted by \sim in team semantics)

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for any negation-normal form first-order formula ϕ is defined inductively as follows:

For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \ \mathcal{M} \models_X \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_X \phi \text{ and } \mathcal{M} \models_X \psi;$$

 $\blacktriangleright \ \mathcal{M}\models_{X}\phi\lor\psi \quad \text{iff} \quad \text{there are } Y,Z\subseteq X,\ Y\cup Z=X,\ \text{s.t.}\ \mathcal{M}\models_{Y}\phi \text{ and } \mathcal{M}\models_{Z}\psi;$

• $\mathcal{M} \models_s \exists x \phi$ iff there exists $a \in \text{Dom}(\mathcal{M})$ such that $\mathcal{M} \models_{s(a/x)} \phi$;

 $\blacktriangleright \mathcal{M} \models_{s} \forall x \phi \quad \text{iff} \quad \text{for all } a \in \text{Dom}(\mathcal{M}), \ \mathcal{M} \models_{s(a/x)} \phi.$

From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for any negation-normal form first-order formula ϕ is defined inductively as follows:

▶ For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \ \mathcal{M} \models_X \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_X \phi \text{ and } \mathcal{M} \models_X \psi;$$

 $\blacktriangleright \ \mathcal{M} \models_X \phi \lor \psi \quad \text{iff} \quad \text{there are } Y, Z \subseteq X, \ Y \cup Z = X, \ \text{s.t.} \ \mathcal{M} \models_Y \phi \text{ and } \mathcal{M} \models_Z \psi;$

•
$$\mathcal{M} \models_X \exists x \phi$$
 iff there exists $F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\}$ such that $\mathcal{M} \models_{X[F/x]} \phi$;

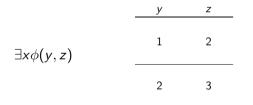
• $\mathcal{M} \models_s \forall x \phi$ iff for all $a \in \text{Dom}(\mathcal{M})$, $\mathcal{M} \models_{s(a/x)} \phi$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$$\mathcal{M} \models_X \exists x \phi \text{ if } \mathcal{M} \models_{X[F/x]} \phi \text{ for some } F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\},$$

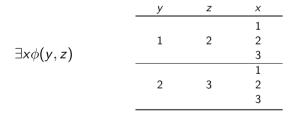
where $X[F/x] := \{s(a/x) \mid a \in F(s)\}.$

 $\mathcal{M} \models_X \exists x \phi \text{ if } \mathcal{M} \models_{X[F/x]} \phi \text{ for some } F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\},$ where $X[F/x] := \{s(a/x) \mid a \in F(s)\}.$

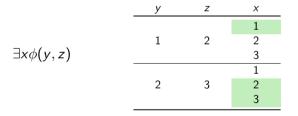


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\mathcal{M} \models_X \exists x \phi \text{ if } \mathcal{M} \models_{X[F/x]} \phi \text{ for some } F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\},$ where $X[F/x] := \{s(a/x) \mid a \in F(s)\}.$



 $\mathcal{M} \models_X \exists x \phi \text{ if } \mathcal{M} \models_{X[F/x]} \phi \text{ for some } F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\},$ where $X[F/x] := \{s(a/x) \mid a \in F(s)\}.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for any negation-normal form first-order formula ϕ is defined inductively as follows:

▶ For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \ \mathcal{M} \models_X \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_X \phi \text{ and } \mathcal{M} \models_X \psi;$$

 $\blacktriangleright \ \mathcal{M} \models_X \phi \lor \psi \quad \text{iff} \quad \text{there are } Y, Z \subseteq X, \ Y \cup Z = X, \ \text{s.t.} \ \mathcal{M} \models_Y \phi \text{ and } \mathcal{M} \models_Z \psi;$

•
$$\mathcal{M} \models_X \exists x \phi$$
 iff there exists $F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\}$ such that $\mathcal{M} \models_{X[F/x]} \phi$;

• $\mathcal{M} \models_s \forall x \phi$ iff for all $a \in \text{Dom}(\mathcal{M})$, $\mathcal{M} \models_{s(a/x)} \phi$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

From Tarski to Hodges

Definition (Team Semantics [Hod97])

Let \mathcal{M} be a τ -model, and X its team. The satisfaction relation $\mathcal{M} \models_X \phi$ for any negation-normal form first-order formula ϕ is defined inductively as follows:

▶ For a literal
$$\phi$$
, $\mathcal{M} \models_X \phi$ iff $\mathcal{M} \models_s \phi$ for all $s \in X$;

$$\blacktriangleright \ \mathcal{M} \models_X \phi \land \psi \quad \text{iff} \quad \mathcal{M} \models_X \phi \text{ and } \mathcal{M} \models_X \psi;$$

 $\blacktriangleright \ \mathcal{M} \models_X \phi \lor \psi \quad \text{iff} \quad \text{there are } Y, Z \subseteq X, \ Y \cup Z = X, \ \text{s.t.} \ \mathcal{M} \models_Y \phi \text{ and } \mathcal{M} \models_Z \psi;$

•
$$\mathcal{M} \models_X \exists x \phi$$
 iff there exists $F : X \to \mathcal{P}(\text{Dom}(\mathcal{M})) \setminus \{\emptyset\}$ such that $\mathcal{M} \models_{X[F/x]} \phi$;

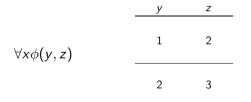
$$\blacktriangleright \mathcal{M} \models_X \forall x \phi \quad \text{iff} \quad \mathcal{M} \models_{X[\text{Dom}(\mathcal{M})/x]} \phi.$$

$$\mathcal{M} \models_X \forall x \phi \text{ if } \mathcal{M} \models_{X[\text{Dom}(\mathcal{M})/x]} \phi,$$

where $X[A/x] := \{s(a/x) \mid a \in A\}.$

$$\mathcal{M} \models_X \forall x \phi \text{ if } \mathcal{M} \models_{X[\operatorname{Dom}(\mathcal{M})/x]} \phi,$$

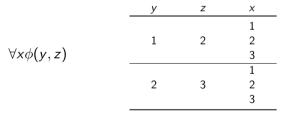
where $X[A/x] := \{s(a/x) \mid a \in A\}.$



うせん 前 ふばやふばやふむやる

$$\mathcal{M} \models_X \forall x \phi \text{ if } \mathcal{M} \models_{X[\text{Dom}(\mathcal{M})/x]} \phi,$$

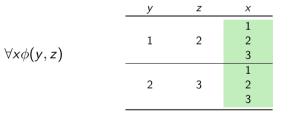
where $X[A/x] := \{s(a/x) \mid a \in A\}.$



◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

$$\mathcal{M} \models_X \forall x \phi \text{ if } \mathcal{M} \models_{X[\text{Dom}(\mathcal{M})/x]} \phi,$$

where $X[A/x] := \{s(a/x) \mid a \in A\}.$



Dependence logic can be used to formalize reasoning about statements related to data (outcomes of experiments, voting profiles, databases):

▶ No-Go theorems (e.g., Bell's theorem) in quantum mechanics [APV24, AG22]

- Arrow's theorem in social choice [PY16]
- Logical implication for database dependencies [H. and Kontinen, 2016]

First-order logic has a tight connection between syntax and semantics

Gödel's completeness theorem (1929). The following are equivalent for a first-order logic formula ϕ :

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

- 1. ϕ is valid (true in all structures)
- 2. ϕ has a finite formal deduction

Transferring rules

The following rules hold true in first-order logic:

- $\blacktriangleright \ \ {\rm If} \ \phi \lor \phi, \ {\rm then} \ \phi$
- If $(\phi \land \psi) \lor (\phi \land \theta)$, then $\phi \land (\psi \lor \theta)$
- If $(\phi \lor \psi) \land (\phi \lor \theta)$, then $\phi \lor (\psi \land \theta)$

Transferring rules

The following rules hold true in first-order logic:

 $\blacktriangleright \ \ \mathsf{If} \ \phi \lor \phi, \ \mathsf{then} \ \phi$

- ▶ If $(\phi \land \psi) \lor (\phi \land \theta)$, then $\phi \land (\psi \lor \theta)$
- If $(\phi \lor \psi) \land (\phi \lor \theta)$, then $\phi \lor (\psi \land \theta)$

These rules do not hold in dependence logic

Dependence logic does not have as tight a connection between syntax and semantics

The following are not equivalent for a dependence logic formula ϕ :

- 1. ϕ is valid (true in all structures)
- 2. ϕ has a finite formal deduction

Reason. Not possible to enumerate all valid formulas ϕ by a computer program. In contrast, a formal deduction system gives rise to such a program.

Limited formal reasoning

It is possible to create a formal deduction system that is sound and complete w.r.t. the following logical consequence relation:

 $T \models \psi$

/T implies ψ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

where

T is a set of dependence logic formulas

 $\blacktriangleright \psi$ is a first-order logic formula

Such systems created in [KV13], [H. 15]

What can be expressed in dependence logic?

Those properties of teams (=data) that are closed downwards and definable in existential second-order logic (ESO):

▶ obtained by adding to a first-order logic formula φ a prefix of existentially quantified relations: ∃R₁...∃R_nφ

Example (Bipartiteness revisited)

Graph G with edge relation E is bipartite iff $G \models \exists P \exists Q \forall x \forall y \theta$, where θ is a conjunction of

- \blacktriangleright $P(x) \lor Q(x)$
- $\blacktriangleright \neg P(x) \lor \neg Q(x)$
- ► $(P(x) \land Q(y)) \rightarrow \neg E(x, y)$

Non-deterministic polynomial time (NP) consists of all those problems that are solvable in polynomial-time by non-deterministic computation.

Theorem ([Fag74])

A class of finite structures can be recognized in NP if and only if it can be described in existential second-order logic.

Consequence: descriptive power of dependence logic \approx computational power of NP

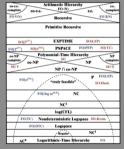
Side note: descriptive complexity

- Fagin's theorem led to development of descriptive complexity
- Idea is to find correspondencies between:
 - computational complexity classes
 - descriptive logical languages
- Examples:
 - ► ESO = NP
 - full second-order logic = polynomial-time hierarchy
- Open question. Is there a logic L such that

L = PTIME

GRADUATE TEXTS IN COMPUTER SCIENCE

Descriptive Complexity



Springer

Descriptive complexity of dependence logic(s)

Different variants of dependence logic obtained by combining:

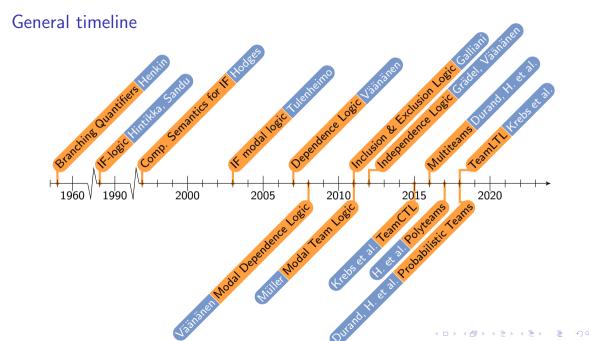
- Logical connectives and quantifiers
- Notions of dependence and independence

Recall: FO formed using $\neg, \land, \lor, \exists, \forall$

▶ ...

- ▶ Dependence logic: $FO + dep(x, y) \le NP$
- ▶ Independence logic: $FO + y \perp_x z = NP$ [GV13]
- ▶ Inclusion logic: $FO + x \subseteq y \leq PTIME$ [GH13]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00



Complexity of Modal Logics in Team Semantics

Logic	SAT	VAL	MC
ML	PSPACE (Lad77)	PSPACE (Lad77)	P (CES86, Sch02)
ML(⊆)	EXPTIME (HKMV15)	coNEXPTIME-hard (HKMV17)	Р (нкмv17)
$\mathrm{ML}(\mathrm{dep}(\cdot))$	NEXPTIME (Sev09)	NEXPTIME (Virtema 14, H. 17)	NP (EbLo12)
$\mathrm{ML}(\perp)$	NEXPTIME (KMSV17)	$\mathrm{coNEXPTIME}^{\mathrm{NP}} ext{-hard}$ (H. 19)	NP (KMSV17)
$\mathrm{ML}(\sim)$	TOWER(poly) (Lüc18)	TOWER(poly) (Lüc18)	PSPACE (Mül14)

TOWER(poly): computation time $2^{n_{poly}^{n$

< ロ > < 同 > < 三 > < 三 > < 三 > の < ○

Complexity of Modal Logics in Team Semantics

Logic	SAT	VAL	МС
ML	PSPACE (Lad77)	PSPACE (Lad77)	P (CES86, Sch02)
ML(⊆)	EXPTIME (HKMV15)	coNEXPTIME-hard (HKMV17)	Р (нкмv17)
$\mathrm{ML}(\mathrm{dep}(\cdot))$	NEXPTIME (Sev09)	NEXPTIME (Virtema 14, H. 17)	NP (EbLo12)
$\mathrm{ML}(\perp)$	NEXPTIME (KMSV17)	$\mathrm{coNEXPTIME}^{\mathrm{NP}} ext{-hard}$ (H. 19)	NP (KMSV17)
$\mathrm{ML}(\sim)$	TOWER(poly) (Lüc18)	TOWER(poly) (Lüc18)	PSPACE (Mül14)
$\mathrm{PL}(\sim)$	AEXPTIME(poly) (HKVV18)	AEXPTIME(poly) (HKVV18)	PSPACE (Mül14)

Interestingly, in many cases hardness holds already for the propositional frangment.

TOWER(poly): computation time $2^{n_{p}^{n}n}^{n_{p}^{n_{p}^{n}}n}^{n_{$

Quantitative versions I

Dependence logic models relational but not quantitative notions of dependence

Logics of quantitative dependence (such as probabilistic independence) require extension of semantics:

х	у	z	#
а	b	с	2
а	b	d	1
b	а	с	1
b	а	d	1

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

 \longrightarrow Multiteam semantics [Durand, H. et al. 18]

Quantitative versions II

Dependence logic models relational but not quantitative notions of dependence

Logics of quantitative dependence (such as probabilistic independence) require extension of semantics:

х	У	z	Prob
а	b	с	$\frac{2}{5}$
а	b	d	2515
b	а	с	$\frac{1}{5}$
b	а	d	$\frac{1}{5}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

 \longrightarrow Probabilistic team semantics [H. et al., 18, 20, 22]

Quantitative versions III

All versions of team semantics unified by assuming a generic number domain K, such as a positive semiring $(\mathbb{R}_{\geq 0}, \mathbb{N}, \mathbb{B}, ...)$

x	у	z	Κ
а	b	с	k_1
а	b	d	k_2
b	а	с	k_3
b	а	d	k_4

 \longrightarrow Semiring team semantics [Barlag, H. et al., 23]

Example: the so-called *semi-graphoid axioms* of conditional independence are sound in most semirings [H. 2024]

Conclusion

Dependence logic:

- How dependencies and logic interact?
- Tool for the study of more complex dependence relations
- A vehicle for uncovering and unifying the mathematics of dependence in a variety of contexts:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Databases
- Probability theory
- Social choice theory
- Quantum physics
- ▶ ...

References I

- Rafael Albert and Erich Grädel, Unifying hidden-variable problems from quantum mechanics by logics of dependence and independence, Ann. Pure Appl. Log. 173 (2022), no. 10, 103088.
- Samson Abramsky, Joni Puljujärvi, and Jouko Väänänen, *Team semantics and independence notions in quantum physics*, 2024.
- Timon Barlag, Miika Hannula, Juha Kontinen, Nina Pardal, and Jonni Virtema, *Unified foundations of team semantics via semirings*, KR, 2023, pp. 75–85.
- Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema, *Approximation and dependence via multiteam semantics*, Ann. Math. Artif. Intell. **83** (2018), no. 3-4, 297–320.
- , Probabilistic team semantics, Foundations of Information and Knowledge Systems - 10th International Symposium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings, 2018, pp. 186–206.

References II

- Ronald Fagin, *Generalized first-order spectra and polynomial-time recognizable sets*, Complexity of Computation, SIAM-AMS Proceedings,, vol. Vol. 7, 1974, pp. 43–73.
- Pietro Galliani and Lauri Hella, Inclusion Logic and Fixed Point Logic, CSL 2013, 2013, pp. 281–295.
- Erich Grädel and Jouko Väänänen, *Dependence and independence*, Studia Logica **101** (2013), no. 2, 399–410 (English).
- Miika Hannula, *Axiomatizing first-order consequences in independence logic*, Ann. Pure Appl. Logic **166** (2015), no. 1, 61–91.
- Miika Hannula, *Conditional independence on semiring relations*, ICDT, LIPIcs, vol. 290, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2024, pp. 20:1–20:20.
- Leon Henkin, *Some Remarks on Infinitely Long Formulas*, Infinitistic Methods. Proc. Symposium on Foundations of Mathematics, Pergamon Press, 1961, pp. 167–183.

References III

- Miika Hannula and Juha Kontinen, *A finite axiomatization of conditional independence and inclusion dependencies*, Inf. Comput. **249** (2016), 121–137.
- Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema, Descriptive complexity of real computation and probabilistic independence logic, LICS, ACM, 2020, pp. 550–563.
- Wilfrid Hodges, *Compositional Semantics for a Language of Imperfect Information*, Journal of the Interest Group in Pure and Applied Logics **5 (4)** (1997), 539–563.
- J. Hintikka and G. Sandu, *Informational independence as a semantical phenomenon*, Logic, Methodology and Philosophy of Science (R. Hilpinen J. E. Fenstad, I. T. Frolov, ed.), Amsterdam: Elsevier, 1989, pp. 571–589.
- Miika Hannula and Jonni Virtema, *Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals*, Ann. Pure Appl. Log. **173** (2022), no. 10, 103108.

References IV

- Juha Kontinen and Jouko Väänänen, *Axiomatizing first-order consequences in dependence logic*, Ann. Pure Appl. Logic **164** (2013), no. 11, 1101–1117.
- Eric Pacuit and Fan Yang, *Dependence and independence in social choice: Arrow's theorem*, Dependence Logic, Springer, 2016, pp. 235–260.
- Jouko Väänänen, *Dependence logic*, Cambridge University Press, 2007.