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Short bio:
▶ PhD (2015) from the University of Helsinki in mathematical logic
▶ Research during PhD/postdoc:

▶ Dependence logic ∀,∃,∧,∨,¬,=(x , y)
▶ Implication problem Σ |= τ? for database dependencies

▶ Since 2024 assoc. prof. in data management at Tartu

This talk: General overview1 of one of the most fundamental problems in database
theory:
▶ Query evaluation

1Main source: [Arenas et al., 2022]
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Output of a query

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND d.dep_name = ’Sales’;

Employees
emp_id emp_name dep_id
12345 Alice 10
67890 Bob 20
23456 Charlie 10

Departments
dep_id dep_name

10 Sales
20 Engineering

−→ Output
emp_id emp_name
12345 Alice
23456 Charlie
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Notation q(D) = output of query q on database D

Problem: Query-Evaluation

Input: A query q, a database D, a tuple of values ā
Output: true if ā ∈ q(D), and false otherwise

Previous example:

Input:
▶ query q = given SQL query
▶ database D = given database
▶ tuple ā = (Alice, Sales)

Output: true / (12345, Alice)∈ q(D)
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Mathematics behind

How to analyse the complexity of Query-Evaluation?

We need a mathematical description of a
▶ (relational) database
▶ (SQL) query
▶ (data tuple)

6 / 67



Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Database

Employees
emp_id emp_name dep_id
12345 Alice 10
67890 Bob 20
23456 Charlie 10

Departments
dep_id dep_name

10 Sales
20 Engineering

▶ Each entry viewed as a fact, i.e., an expression such as Employees(12345, Alice,
10)
▶ let’s use here a shorthand: Emp(12345, Alice, 10)

▶ A database D defined as a finite set of facts:

{Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

▶ D is a database of a schema S = {E [3],D[2]} specifying its structure
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Query
A query q over schema S is a function that maps databases D of S to finite sets of
sequences (of the same length)

q(D) = {(a1, . . . , ak), (b1, . . . , bk), . . . }

Example

In our example, q(D) = {(12345, Alice), (23456, Charlie)}

Such queries can be described using query languages. Two paradigms:
▶ Declarative languages (logic)
▶ Procedural languages (algebra)

8 / 67



Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Queries and logic

To simplify analysis, let us restrict attention to the so-called "Core SQL", formed using
only commands SELECT, FROM, WHERE with equality comparisons

vs.

First-order logic (FO):
▶ Atomic formulas R(x , y), x = y , . . .

▶ Connectives ∧,∨,¬
▶ Quantifiers ∃, ∀
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Queries and logic

To simplify analysis, let us restrict attention to the so-called "Core SQL", formed using
only commands SELECT, FROM, WHERE with equality comparisons

=

Conjunctive query (CQ):
▶ Atomic formulas R(x , y), (((((x = y , . . .

▶ Connectives ∧, ���∨,¬
▶ Quantifiers ∃, �∀
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Queries and logic

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND d.dep_name = ’Sales’;

. . . corresponds to the CQ . . .

ϕ(x , y) := ∃z∃w(Emp(x , y , z) ∧ Dep(z , ’Sales’))

where
▶ Variables x , y are free and correspond to the output
▶ Variables z is bound by ∃; ’Sales’ called a constant
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Queries and logic

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND d.dep_name = ’Sales’;

. . . corresponds to the CQ . . .

Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)

where
▶ Emp(x , y , z), Dep(z , ’Sales’) forms the body
▶ Answer(x , y) forms the head
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CQ Semantics

Given a database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

and a query
q = Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)

we define the output q(D) as the set of all pairs (h(x), h(y)), where

▶ h is a mapping from variables to constants, and
▶ Emp(h(x), h(y), h(z)) and Dep(h(z), ’Sales’) are in D
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This can be represented...

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND e.dep_name = ’Sales’;

Employees
emp_id emp_name dep_id
12345 Alice 10
67890 Bob 20
23456 Charlie 10

Departments
dep_id dep_name

10 Sales
20 Engineering

−→ Output
emp_id emp_name
12345 Alice
23456 Charlie
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...as this

▶ query q = Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)
▶ database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

▶ output q(D) = {(12345,Alice), (23456,Charlie)}
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Query-Evaluation revisited
Problem: Query-Evaluation

Input: A query q, a database D and a tuple of values ā
Output: true if ā ∈ q(D), and false otherwise

Our example:

Input:
▶ query q = Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)
▶ database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

▶ tuple ā = (12345,Alice)

Output: true
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CQ-Evaluation

Problem: CQ-Evaluation

Input: A Boolean conjunctive query q, a database D
Output: true if D satisfies q, and false otherwise

Our example:

Input:
▶ query q = Answer :− Emp(12345, ’Alice’, z),Dep(z , ’Sales’)
▶ database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

Output: true
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Theorem
CQ-Evaluation is NP-complete.

Proof.
CQ-Evaluation is in NP: Guess the function h from variables to constants and check
that the body of q is mapped into D.

CQ-Evaluation is in NP-hard: Next page.
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Hardness: Reduction from Clique to CQ-Evaluation
Clique:
▶ Given a natural number k and an undirected graph G with vertex set V and edge

set E (without self-loops {u, u}), decide if G has a clique of size k .
▶ NP-complete

CQ-Evaluation:
▶ Construct a database D as follows:

D = {Node(v) | v ∈ V } ∪ {Edge(u, v) | {u, v} ∈ E}

q = ∃x1 . . . ∃xk

 k∧
i=1

Node(xi ) ∧
∧

i ,j∈[k]
i ̸=j

Edge(xi , xj)


=⇒ D satisfies q if and only if G contains a clique of size k
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Hardness analysed

▶ Hardness of CQ-Evaluation can arise from queries shaped as cliques
▶ Such queries not common / typically queries shaped as trees
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Hardness analysed cont.
Consider

Answer :− S(u, x),R(x , y),T (y , z),U(z , v),V (z ,w)

having shape:

x

y

z

v

u

w

R

T

U

S

V

20 / 67



Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Semi-Join

For two relations R and S the semi-join R ⋉ S returns all rows from R that have
matching rows in S

Example

R x y

1 a
2 b
3 c
4 d

⋉ T y z

a 10
a 10
c 20
e 30

= x y

1 a
3 c
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Evaluating tree queries

Computation of Answer:
1. Take the line graph of prev.

graph

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)
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Evaluating tree queries
Computation of Answer:

1. Take the line graph of prev.
graph

2. T [y , z ] := T [y , z ]⋉ V [z ,w ]

3. T [y , z ] := T [y , z ]⋉ U[z , v ]

4. R[x , y ] := R[x , y ]⋉ T [y , z ]

5. R[x , y ] := R[x , y ]⋉ S [u, x ]

→ Answer is true iff R is
non-empty in the end

Time complexity:
O(||D|| · log ||D|| · ||q||)

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

⋊ ⋉

⋊ ⋉
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Yannakakis

▶ Previous algorithm known as the Yannakakis algorithm [Yannakakis, 1981]
▶ Follows a bottom-up dynamic programming approach

But, we can do better (Yannakakis algorithm is actually more general, as we will see):
▶ What if q contains only small cliques?
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Small clique
Consider

Answer :− S(u, x),R(x , y),T (y , z),T ′(y , q),T ′′(q, z),U(z , v),V (z ,w)

having shape:

x

y q

z

v

u

w

R

T

T ′

T ′′

U

S

V
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Small clique re-organised

Atoms are grouped into nodes:
▶ S(u, x)

▶ R(x , y)

▶ T (y , z),T ′(y , q),T ′′(q, z)

▶ U(z , v)

▶ V (z ,w)

x,y

u,x y,z,q

z,v z,w
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Small clique further re-organised

Add 3 new children for the clique
→
▶ S(u, x)

▶ R(x , y)

▶ T (y , z),T ′(y , q),T ′′(q, z)

▶ U(z , v)

▶ V (z ,w)

x,y

u,x y,z,q

z,v y,z y,q q,z z,w
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Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

x,y

u,x y,z,q

z,v y,z y,q q,z z,w
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7. R[x , y ] := R[x , y ]⋉ X [y , z , q]
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Answer = true iff R non-empty in the
end. Time complexity (here)
O((||q||+ 1)(||D||3 log ||D||3))

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉⋉⋉
⋉⋊
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CQ as a hypergraph

Let’s generalise this idea:
▶ Queries can have more than two terms in an atom → hypergraphs
▶ Hypergraphs can be re-structured as a tree that group ≤ k variables (leading to

the ||D||k -factor in time complexity) → treewidth to measure growth of complexity

Definition
A hypergraph is a pair H = (V ,E ) consisting of a set V of nodes and a set E of
subsets of V , called hyperedges.
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Example

Answer:−S(u, x),R(x , y),T (y , z , q),U(z , v),V (z ,w),

A(y ′, z ′, q′),B(y , z , y ′, z ′),C (z , q, z ′, q′)

as a hypergraph:

u x y z q

y’ z’ q’

v w
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Treewidth

Definition
A tree decomposition of a hypergraph G = (V ,E ) is a tree T = (B,ET ), where the
vertex set B ⊆ P(V ) is a collection of bags and ET is a set of edges as follows:

1.
⋃

b∈B b = V ,
2. for every e ∈ E there is a bag b ∈ B with e ⊆ b, and
3. for all v ∈ V the subtree of T induced by the bags containing v is connected.

The width of the tree decomposition T is the size of the largest bag decreased by one:
maxb∈B |b| − 1. The treewidth of G is the minimum width over all tree decompositions
of G .
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G is tree iff it has treewidth 1

Example

Left: our first “tree query”. Right: its tree decomposition of width 1.

x

y

z

v

u

w

x,y

u,x y,z

v,y y,w
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Last example

Example

Left: our last example query. Right: its tree decomposition of width 5.

u x y z q

y’ z’ q’

v w

x,y

u,x y,z,q
y’,z’,q’

z,v z,w
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CQ-Evaluation for fixed treewidth

Theorem
Fix k ≥ 1. Then CQ-Evaluation, restricted to queries with treewidth at most k , can be
solved in time

O(||D||k+1 · ||q||4 · (log ||D||+ log ||q||)).

Key pointers:
▶ Tree decomposition can be constructed in time 2O(k3)||G || for a (hyper)graph G

with treewidth k [Bodlaender, 1996] =⇒ linear time for fixed k

▶ Treewidth = largest bag size - 1 =⇒ ||D||k+1-factor
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Happy?
Not happy. Efficient evaluation can be possible even with unbounded treewidth

Example

Consider “n-clique”+“one giant atom”:

Answer :− R(xi , xj)i ,j∈[n]
i ̸=j

,S(x1, . . . , xn)

Treewidth is n − 1, yet the following procedure is efficient:
▶ Step 1. S [x1, . . . , xn] := S [x1, . . . , xn]⋉ R[x1, x1]

▶ Step 2. S [x1, . . . , xn] := S [x1, . . . , xn]⋉ R[x1, x2]

▶ . . .

▶ Step n2. S [x1, . . . , xn] := S [x1, . . . , xn]⋉ R[xn, xn]

34 / 67



Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Yannakakis revisited
The max size of a bag (in a tree decomposition) is not crucial; the number of
hyperedges covering a bag is. Bottom right: tree decomposition of our example query

Answer:−S(u, x),R(x , y),T (y , z , q),U(z , v),V (z ,w),

A(y ′, z ′, q′),B(y , z , y ′, z ′),C (z , q, z ′, q′)

Computation of Answer
1. X [y , z , q, y ′, z ′, q′] := B ▷◁ C

2. X [y , z , q, y ′, z ′, q′] := X ⋉ V

3. . . .
First step yields ||D||2-factor since the
big bag is covered by 2 atoms B and C

x,y

u,x y,z,q
y’,z’,q’

z,v z,w
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Treewidth revisited

Definition (Generalised hypertreewidth [Gottlob et al., 2003])
A generalised hypertree decomposition of a hypergraph H = (V ,E ) is a triple
(B,ET , λ), where

1. (B,ET ) is a tree decomposition of H.
2. λ is a mapping that assigns a subset of E to each bag b ∈ B .
3. For each bag b ∈ B , b ⊆

⋃
e∈λ(b) e.

The width of a hypertree is the cardinality of its largest λ-label, i.e., maxb∈B |λ(b)|.
The generalised hypertreewidth of H is the minimum over over widths of generalised
hypertree decompositions of H.
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CQ-Evaluation for fixed generalised hypertreewidth

Theorem
Fix k ≥ 1. Then CQ-Evaluation, restricted to queries of generalised hypertreewidth at
most k , can be solved in time

2||q||
c
+ O(||D||k · ||q||), for some integer c ≥ 1.

Key pointers:
▶ Finding generalised hypertree decompositions is generally hard. 2||q||

c
accounts for

what is essentially a brute-force construction.
▶ Generalised hypertreewidth = largest bag cover =⇒ ||D||k -factor

Generalised hypertreewidth can be further generalised with the notion a fractional
hypertreewidth [Grohe and Marx, 2006], but let’s move on...
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Efficient CQ-Evaluation: Recap

Recall CQ-Evaluation has two-partite input: (q,D)

Structural properties of q:
▶ Treewidth
▶ Generalised hypertreewidth

...lead to efficient query evaluation.

Properties of D?
▶ Cardinalities of relations?
▶ Constraints on relations?

Can we combine information from q and D to obtain efficient algorithms?
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Target

Let us consider again the case where the CQ q is non-Boolean, i.e., the output q(D) is
a relation

Target: Devise efficient algorithms for computing q(D)

Strategy:
1. Given structural properties of q and information about D, determine the

worst-case size of the output q(D).
2. Devise algorithms that run in time proportional to this worst-case output size.
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Join queries

We will consider join queries q.

The (natural) join of R1 and R2, denoted R1 ▷◁ R2, is the set of tuples that are formed
by combining tuples from R1 and R2 which agree on their common attributes.
“Formally”:

R ▷◁ S = {t | t[att(R)] ∈ R, t[att(S)] ∈ S},

where t[A] is the projection of a tuple t on an attribute set A.

Note: Join is associative and commutative
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3-way join example

Example

Input Tables:

R[A,B] =

A B

1 10
2 20
3 30

S [A,C ] =

A C

1 100
2 200
4 400

T [B,C ] =

B C

10 100
20 300
30 300

Result of the Join:

R[A,B] ⋊⋉ S [A,C ] ⋊⋉ T [B,C ] =
A B C

1 10 100
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Joins vs. CQs

A join query R1 ⋊⋉ · · · ⋊⋉ Rn can be viewed as a CQ of the form

Answer(x⃗) :− R1(y⃗1), . . . ,Rn(y⃗n)

in which:
1. Each relation name Ri occurs exactly once.
2. For every i ∈ [n], no variables are repeated in y⃗i .
3. Every variable in y⃗i also appears in x⃗ .
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Example: “Triangle Query" q△
Consider the join query:

q△ = R[A,B] ⋊⋉ S [B,C ] ⋊⋉ T [C ,A]

The hypergraph of q△ visualizes its structure:

C

A B

TT SS

RR

Question: How many tuples can there be in q△(D), where D is a database?
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Evaluating q△(D)

Assume R, S ,T each have N tuples

Trivially, |q△(D)| ≤ N3 (size of Cartesian product |R| · |S | · |T |)

However, |q△(D)| ≤ N2 due to attribute constraints. Consider the following
computation:

1. Compute R ⋊⋉ S , selecting tuples matching on B .
▶ Output size at most |R × S | ≤ N2

2. Join the result with T , selecting tuples matching on A and C .
▶ Can only remove tuples from the previous join

3. =⇒ Final output size at most |R × S | ≤ N2.
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Our naïve analysis yields:
|q△(D)| ≤ N2

The so-called AGM bound [Atserias et al., 2013] yields:

|q△(D)| ≤ N3/2 (1)

Next: Derivation of (1)
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Entropy

(Shannon) entropy of a random variable X with a finite domain D and a probability
mass function p:

H(X ) := −
∑
x∈D

p(x) log p(x).

Useful bounds: 0 ≤ H(X ) ≤ log |D|

Entropic function h(Xα) := H(Xα) (α ⊆ [n]) for Shannon entropies H arising from
marginals of some joint distribution of random variables X1, . . . ,Xn

Entropic region Γ∗n: the subset of R2n consisting of the entropic functions/vectors over
n random variables
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Laws of information

Example: conditioning decreases entropy

h(X | Y ) = h(XY )− h(Y ) ≤ h(X )

Polymatroid axioms:
▶ h(∅) = 0
▶ h(X ) ≤ h(XY ) (monotonicity)
▶ h(X ) + h(XYZ) ≤ h(XY ) + h(XZ) (submodularity)

Polymatroid axioms sound but incomplete [Zhang and Yeung, 1998]; there is no finite
axiomatic characterisation for entropic functions [Matús, 2007]
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Derivation of AGM bound I

Instance of Shearer’s Lemma:

1
2

(
h(XY )+ h(XZ )+ h(YZ )

)
= 1

2

(
h(X ) + h(Y | X )+ h(X ) + h(Z | X )+ h(Y ) + h(Z | Y )

)
≥ 1

2

(
h(X ) + h(Y | X )+ h(X ) + h(Z | XY )+ h(Y | X ) + h(Z | XY )

)
= h(X ) + h(Y | X ) + h(Z | XY )

= h(XYZ )
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Derivation of AGM bound II

Consider q△ = R[A,B] ▷◁ S [B,C ] ▷◁ T [C ,A] and a database D = {R, S ,T} where
each relation at most of size N

If h is the entropic function of the output q△(D) uniformly distributed:

log |q△(D)| = h(ABC ) ≤ 1
2
(
h(AB) + h(AC ) + h(BC )

)
≤ 1

2
(
log |R|+ log |S |+ log |T |

)
≤ 3

2
logN
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Fractional Edge Cover
Definition
A fractional edge cover of a hypergraph H = (V ,E ) is a function

f : E → Q≥0

such that, for each node v ∈ V , it holds that∑
v∈e

f (e) ≥ 1.

The cover f is called minimal when it minimises the weight∑
e∈E

f (e).
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Fractional Edge Cover for Triangle query

Example

Let f (e) = 1/2 for all e ∈ E . Then,
f (e) ≥ 0 for all hyperedges e, and:

C

A B

1/2 1/2

1/2∑
A∈e

f (e) = f ({A,B}) + f ({A,C}) = 1/2 + 1/2 ≥ 1∑
B∈e

f (e) = f ({A,B}) + f ({B,C}) = 1/2 + 1/2 ≥ 1∑
C∈e

f (e) = f ({A,C}) + f ({B,C}) = 1/2 + 1/2 ≥ 1
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Minimality of f

A minimal fractional edge cover for q△ = R[A,B] ▷◁ S [B,C ] ▷◁ T [C ,A] can be found
by solving the following linear program:

minimize xR + xS + xT

subject to xR + xT ≥ 1,

xR + xS ≥ 1,

xS + xT ≥ 1,

and xR ≥ 0, xS ≥ 0, xT ≥ 0.

minimal fractional edge cover = values of xR , xS , xT at the optimal solution
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AGM Bound for Join Queries

Theorem (AGM Bound)
Consider a join query q = R1 ⋊⋉ · · · ⋊⋉ Rn over schema S and a fractional edge cover f
of q. Then, for every database D, we have:

|q(D)| ≤
n∏

i=1

|Ri |f (S(Ri )). (2)

If f is a minimal, there are arbitrarily large databases D for which Eq. (2) is an equality,
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Optimal AGM bound for q△

Example

Assume |R| = |S | = |T | = N. Then:

C

A B

1/2 1/2

1/2

|q△(D)| ≤
n∏

i=1

|Ri |f (S(Ri )) = |R|1/2 · |S |1/2 · |T |1/2 =
√
|R| · |S | · |T | = N

√
N
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Inoptimality of binary joins

Suppose each of R,S ,T has the form

1 1

N tuples

1 2
...

...
1 (N + 1)/2
2 1
...

...
(N + 1)/2 1

▶ AGM bound = N
√
N

▶ Any intermediate binary join R ▷◁S ,R ▷◁T , S ▷◁T contains more than
(N/2)2 = 1

4N
2 tuples

Q: Possible to compute R ▷◁ S ▷◁ T in O(N
√
N)?
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Attribute-Elimination Join for R[A,B] ▷◁ S [B ,C ] ▷◁ T [A,C ]

1. Compute L1 := πA(R ▷◁ T ).
2. For each a ∈ L1:

▶ Compute values b ∈ πB(R ▷◁ S) s.t.
(a, b) ∈ R and (b, c) ∈ S .

▶ Add pairs (a, b) to L2.
3. For each (a, b) ∈ L2:

▶ Compute values c ∈ πC (S ▷◁ T ) s.t.
(b, c) ∈ S and (c , a) ∈ T .

▶ Add triples (a, b, c) to L3.

4. Return L3.

Relations R, S ,T :

Fig. source: [Arenas et al., 2022]

We obtain:
▶ L1 = {5, 2, 6, 7, 4, 10}
▶ L2 = {(5, 3), (2, 3), (2, 4), (6, 8), (4, 8)}
▶ L3 = {(5, 3, 1), (2, 3, 1)} 57 / 67
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Complexity of AEJoin

Theorem
Consider a join query q = R1 ▷◁ . . . ▷◁ Rn over attributes A1, . . . ,Am. Then the
Attribute-Elimination Join algorithm computes the output in time
Õ
(
n ·m ·

∏n
j=1 |Rj |xj

)
, where (x1, . . . , xn) is a fractional edge cover of q.

Note: For a function f (x⃗), we write Õ(f (x⃗)) = O(f (x⃗) log f (x⃗))

A join algorithm with running time Õ(nm|q(D)|) is called a worst-case optimal join
algorithm.
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Efficient CQ-Evaluation: Recap 2

CQ-Evaluation has two-partite input: (q,D). We considered:

Structural properties of q:
▶ Fractional edge cover

Properties of D:
▶ Cardinalities of relations

...to sketch a worst-case optimal join algorithm
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More input information: constraints

Target: Estimate |q(D)| given
1. join query q = R1[X 1] ▷◁ . . . ▷◁ Rn[X n]

2. degree constraints w.r.t. bounds B
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Degree constraints

Degree degR(V | U = u): number of distinct values of V in R under U = u

Max-degree degR(V | U): maximum of degrees degR(V | U = u) over u

▶ Functional dependencies U → V definable by degR(V | U) ≤ 1
▶ Size bounds |R| ≤ B definable by degR(U | ∅) ≤ B

Degree statistics: Set Σ of conditionals (V | U). A conditional (V | U) is guarded by a
relation R[X ] if UV ⊆ X .
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Entropic bound
Target: Estimate |q(D)| given

1. join query q = R1[X 1] ▷◁ . . . ▷◁ Rn[X n]

2. degree statistics Σ and size vector B = (Bσ)σ∈Σ where each σ ∈ Σ guarded by
some atom Rσ(Xσ)

3. D |= (Σ,B), meaning degRσ
(V | U) ≤ Bσ for all σ = (V | U) ∈ Σ

Entropic bound (w.r.t. degree constraints) [Khamis et al., 2017] defined by2

Ent(q,B,Σ) = sup
w :Γ∗n |=(3)

∏
σ∈Σ

Bwσ
σ ,

where ∑
σ∈Σ

wσh(σ) ≥ h(X ) (3)

2Γ∗
n |= (3) denotes that (3) holds for all functions h ∈ Γ∗

n (i.e., all entropic functions h)
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Derivation of entropic bound

Theorem
Let q(X ) be a join query and D a database such that each σ = (V | U) ∈ Σ is guarded
by Rσ[X ] ∈ q s.t. degRD

σ
(V | U) ≤ Bσ. If Γ∗n |=

∑
σ∈Σ wσh(σ) ≥ h(X ), then

|q(D)| ≤
∏
σ∈Σ

Bwσ
σ

Proof.
If h is the entropic function of q(D) uniformly distributed, then

h(σ) = Eu [h(V | U = u)] ≤ max
u

h(V | U = u) ≤ max
u

log degq(D)(V | U = u)

≤ max
u

log degRσ
(V | U = u) = log degRσ

(V | U) ≤ logBσ

whence log |q(D)| = h(X ) ≥
∑

σ∈Σ wσh(σ) ≥
∑

σ∈Σ wσ logBσ.

63 / 67



Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computability

The entropic bound

Ent(q,B,Σ) = sup
w :Γ∗n |=ϕ

∏
σ∈Σ

Bwσ
σ , where ϕ =

∑
σ∈Σ

wσh(σ) ≥ h(X ),

▶ Asymptotically tight
▶ Not known to be computable.
▶ Polynomial-time computable if each σ = (V | U) ∈ Σ s.t. U is a singleton [Im et

al. 2022; H. 2024].

Polymatroid bound (obtained by replacing Γ∗n with Γn) not tight but computable in
exponential time in n.
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Recap: More input information

Target: Estimate |q(D)| given
1. join query q = R1[X 1] ▷◁ . . . ▷◁ Rn[X n]

2. degree constraints w.r.t. bounds B

Things get more complicated when incorporating information about constraints. See
[Suciu, 2023] for an in-depth review of the applications of information theory in
databases.
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CQ-Evaluation problem (given a database D and a Boolean CQ q, is q true for D?)
▶ Generally NP-complete
▶ Tractable when the hypergraph of the query is nearly acyclic (treewidth,

generalised hypertreewidth)
Join computation (outputs of non-Boolean CQs)
▶ Leverage structural properties of q (fractional edge cover) and cardinalities of

relations in D

▶ Worst-case optimal join algorithms run in time proportional to the worst-case
output size, the number of attributes, and the number of relations.
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