
Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Query Evaluation: Basics and Recent Developments

Miika Hannula
University of Tartu

December 16, 2024

1 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Short bio:
▶ PhD (2015) from the University of Helsinki in mathematical logic
▶ Research during PhD/postdoc:

▶ Dependence logic ∀,∃,∧,∨,¬,=(x , y)
▶ Implication problem Σ |= τ? for database dependencies

▶ Since 2024 assoc. prof. in data management at Tartu

This talk: General overview1 of one of the most fundamental problems in database
theory:
▶ Query evaluation

1Main source: [Arenas et al., 2022]
2 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Introduction

Complexity of CQ-Evaluation

Joins with Information Theory

Conclusion

3 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Output of a query

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND d.dep_name = ’Sales’;

Employees
emp_id emp_name dep_id
12345 Alice 10
67890 Bob 20
23456 Charlie 10

Departments
dep_id dep_name

10 Sales
20 Engineering

−→ Output
emp_id emp_name
12345 Alice
23456 Charlie

4 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Notation q(D) = output of query q on database D

Problem: Query-Evaluation

Input: A query q, a database D, a tuple of values ā
Output: true if ā ∈ q(D), and false otherwise

Previous example:

Input:
▶ query q = given SQL query
▶ database D = given database
▶ tuple ā = (Alice, Sales)

Output: true / (12345, Alice)∈ q(D)

5 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Notation q(D) = output of query q on database D

Problem: Query-Evaluation

Input: A query q, a database D, a tuple of values ā
Output: true if ā ∈ q(D), and false otherwise

Previous example:

Input:
▶ query q = given SQL query
▶ database D = given database
▶ tuple ā = (Alice, Sales)

Output: true / (12345, Alice)∈ q(D)

5 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Mathematics behind

How to analyse the complexity of Query-Evaluation?

We need a mathematical description of a
▶ (relational) database
▶ (SQL) query
▶ (data tuple)

6 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Database

Employees
emp_id emp_name dep_id
12345 Alice 10
67890 Bob 20
23456 Charlie 10

Departments
dep_id dep_name

10 Sales
20 Engineering

▶ Each entry viewed as a fact, i.e., an expression such as Employees(12345, Alice,
10)
▶ let’s use here a shorthand: Emp(12345, Alice, 10)

▶ A database D defined as a finite set of facts:

{Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

▶ D is a database of a schema S = {E [3],D[2]} specifying its structure
7 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Query
A query q over schema S is a function that maps databases D of S to finite sets of
sequences (of the same length)

q(D) = {(a1, . . . , ak), (b1, . . . , bk), . . . }

Example

In our example, q(D) = {(12345, Alice), (23456, Charlie)}

Such queries can be described using query languages. Two paradigms:
▶ Declarative languages (logic)
▶ Procedural languages (algebra)

8 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Queries and logic

To simplify analysis, let us restrict attention to the so-called "Core SQL", formed using
only commands SELECT, FROM, WHERE with equality comparisons

vs.

First-order logic (FO):
▶ Atomic formulas R(x , y), x = y , . . .

▶ Connectives ∧,∨,¬
▶ Quantifiers ∃, ∀

9 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Queries and logic

To simplify analysis, let us restrict attention to the so-called "Core SQL", formed using
only commands SELECT, FROM, WHERE with equality comparisons

=

Conjunctive query (CQ):
▶ Atomic formulas R(x , y), (((((x = y , . . .

▶ Connectives ∧, ���∨,¬
▶ Quantifiers ∃, �∀

9 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Queries and logic

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND d.dep_name = ’Sales’;

. . . corresponds to the CQ . . .

ϕ(x , y) := ∃z∃w(Emp(x , y , z) ∧ Dep(z , ’Sales’))

where
▶ Variables x , y are free and correspond to the output
▶ Variables z is bound by ∃; ’Sales’ called a constant

10 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Queries and logic

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND d.dep_name = ’Sales’;

. . . corresponds to the CQ . . .

Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)

where
▶ Emp(x , y , z), Dep(z , ’Sales’) forms the body
▶ Answer(x , y) forms the head

10 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

CQ Semantics

Given a database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

and a query
q = Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)

we define the output q(D) as the set of all pairs (h(x), h(y)), where

▶ h is a mapping from variables to constants, and
▶ Emp(h(x), h(y), h(z)) and Dep(h(z), ’Sales’) are in D

11 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

This can be represented...

SELECT e.emp_id, e.emp_name
FROM Employees AS e, Departments AS d
WHERE e.dep_id = d.dep_id AND e.dep_name = ’Sales’;

Employees
emp_id emp_name dep_id
12345 Alice 10
67890 Bob 20
23456 Charlie 10

Departments
dep_id dep_name

10 Sales
20 Engineering

−→ Output
emp_id emp_name
12345 Alice
23456 Charlie

12 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

...as this

▶ query q = Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)
▶ database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

▶ output q(D) = {(12345,Alice), (23456,Charlie)}

13 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Query-Evaluation revisited
Problem: Query-Evaluation

Input: A query q, a database D and a tuple of values ā
Output: true if ā ∈ q(D), and false otherwise

Our example:

Input:
▶ query q = Answer(x , y) :− Emp(x , y , z),Dep(z , ’Sales’)
▶ database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

▶ tuple ā = (12345,Alice)

Output: true
14 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

CQ-Evaluation

Problem: CQ-Evaluation

Input: A Boolean conjunctive query q, a database D
Output: true if D satisfies q, and false otherwise

Our example:

Input:
▶ query q = Answer :− Emp(12345, ’Alice’, z),Dep(z , ’Sales’)
▶ database

D = {Emp(12345, Alice, 10), Emp(67890, Bob, 20), Emp(23456, Charlie, 10),
Dep(10, Sales), Dep(20, Engineering)}

Output: true
15 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Introduction

Complexity of CQ-Evaluation

Joins with Information Theory

Conclusion

16 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Theorem
CQ-Evaluation is NP-complete.

Proof.
CQ-Evaluation is in NP: Guess the function h from variables to constants and check
that the body of q is mapped into D.

CQ-Evaluation is in NP-hard: Next page.

17 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Hardness: Reduction from Clique to CQ-Evaluation
Clique:
▶ Given a natural number k and an undirected graph G with vertex set V and edge

set E (without self-loops {u, u}), decide if G has a clique of size k .
▶ NP-complete

CQ-Evaluation:
▶ Construct a database D as follows:

D = {Node(v) | v ∈ V } ∪ {Edge(u, v) | {u, v} ∈ E}

q = ∃x1 . . . ∃xk

 k∧
i=1

Node(xi) ∧
∧

i ,j∈[k]
i ̸=j

Edge(xi , xj)

=⇒ D satisfies q if and only if G contains a clique of size k

18 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Hardness analysed

▶ Hardness of CQ-Evaluation can arise from queries shaped as cliques
▶ Such queries not common / typically queries shaped as trees

19 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Hardness analysed cont.
Consider

Answer :− S(u, x),R(x , y),T (y , z),U(z , v),V (z ,w)

having shape:

x

y

z

v

u

w

R

T

U

S

V

20 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Semi-Join

For two relations R and S the semi-join R ⋉ S returns all rows from R that have
matching rows in S

Example

R x y

1 a
2 b
3 c
4 d

⋉ T y z

a 10
a 10
c 20
e 30

= x y

1 a
3 c

21 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating tree queries

Computation of Answer:
1. Take the line graph of prev.

graph

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

22 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating tree queries

Computation of Answer:
1. Take the line graph of prev.

graph
2. T [y , z] := T [y , z]⋉ V [z ,w]

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

⋉

22 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating tree queries

Computation of Answer:
1. Take the line graph of prev.

graph
2. T [y , z] := T [y , z]⋉ V [z ,w]

3. T [y , z] := T [y , z]⋉ U[z , v]

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

⋊ ⋉

22 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating tree queries

Computation of Answer:
1. Take the line graph of prev.

graph
2. T [y , z] := T [y , z]⋉ V [z ,w]

3. T [y , z] := T [y , z]⋉ U[z , v]

4. R[x , y] := R[x , y]⋉ T [y , z]

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

⋉

⋊ ⋉

22 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating tree queries

Computation of Answer:
1. Take the line graph of prev.

graph
2. T [y , z] := T [y , z]⋉ V [z ,w]

3. T [y , z] := T [y , z]⋉ U[z , v]

4. R[x , y] := R[x , y]⋉ T [y , z]

5. R[x , y] := R[x , y]⋉ S [u, x]

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

⋊ ⋉

⋊ ⋉

22 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating tree queries
Computation of Answer:

1. Take the line graph of prev.
graph

2. T [y , z] := T [y , z]⋉ V [z ,w]

3. T [y , z] := T [y , z]⋉ U[z , v]

4. R[x , y] := R[x , y]⋉ T [y , z]

5. R[x , y] := R[x , y]⋉ S [u, x]

→ Answer is true iff R is
non-empty in the end

Time complexity:
O(||D|| · log ||D|| · ||q||)

R(x,y)

S(u,x) T(y,z)

U(z,v) V(z,w)

⋊ ⋉

⋊ ⋉

22 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Yannakakis

▶ Previous algorithm known as the Yannakakis algorithm [Yannakakis, 1981]
▶ Follows a bottom-up dynamic programming approach

But, we can do better (Yannakakis algorithm is actually more general, as we will see):
▶ What if q contains only small cliques?

23 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Small clique
Consider

Answer :− S(u, x),R(x , y),T (y , z),T ′(y , q),T ′′(q, z),U(z , v),V (z ,w)

having shape:

x

y q

z

v

u

w

R

T

T ′

T ′′

U

S

V

24 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Small clique re-organised

Atoms are grouped into nodes:
▶ S(u, x)

▶ R(x , y)

▶ T (y , z),T ′(y , q),T ′′(q, z)

▶ U(z , v)

▶ V (z ,w)

x,y

u,x y,z,q

z,v z,w

25 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Small clique further re-organised

Add 3 new children for the clique
→
▶ S(u, x)

▶ R(x , y)

▶ T (y , z),T ′(y , q),T ′′(q, z)

▶ U(z , v)

▶ V (z ,w)

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

26 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

4. X [y , z , q] := X [y , z , q]⋉T ′[y , q]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

4. X [y , z , q] := X [y , z , q]⋉ T ′[y , q]

5. X [y , z , q] := X [y , z , q]⋉ T [y , z]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉⋉

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

4. X [y , z , q] := X [y , z , q]⋉ T ′[y , q]

5. X [y , z , q] := X [y , z , q]⋉ T [y , z]

6. X [y , z , q] := X [y , z , q]⋉ U[z , v]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉⋉⋉

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

4. X [y , z , q] := X [y , z , q]⋉ T ′[y , q]

5. X [y , z , q] := X [y , z , q]⋉ T [y , z]

6. X [y , z , q] := X [y , z , q]⋉ U[z , v]

7. R[x , y] := R[x , y]⋉ X [y , z , q]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉⋉⋉
⋉

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

adom(D) = the set of all values
appearing in D

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

4. X [y , z , q] := X [y , z , q]⋉ T ′[y , q]

5. X [y , z , q] := X [y , z , q]⋉ T [y , z]

6. X [y , z , q] := X [y , z , q]⋉ U[z , v]

7. R[x , y] := R[x , y]⋉ X [y , z , q]

8. R[x , y] := R[x , y]⋉ S [u, x]

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉⋉⋉
⋉⋊

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computation of answer

1. A[y , z , q] := adom(D)3

2. X [y , z , q] := X [y , z , q]⋉ V [z ,w]

3. X [y , z , q] := X [y , z , q]⋉ T ′′[q, z]

4. X [y , z , q] := X [y , z , q]⋉ T ′[y , q]

5. X [y , z , q] := X [y , z , q]⋉ T [y , z]

6. X [y , z , q] := X [y , z , q]⋉ U[z , v]

7. R[x , y] := R[x , y]⋉ X [y , z , q]

8. R[x , y] := R[x , y]⋉ S [u, x]

Answer = true iff R non-empty in the
end. Time complexity (here)
O((||q||+ 1)(||D||3 log ||D||3))

x,y

u,x y,z,q

z,v y,z y,q q,z z,w

⋉⋉⋉⋉⋉
⋉⋊

27 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

CQ as a hypergraph

Let’s generalise this idea:
▶ Queries can have more than two terms in an atom → hypergraphs
▶ Hypergraphs can be re-structured as a tree that group ≤ k variables (leading to

the ||D||k -factor in time complexity) → treewidth to measure growth of complexity

Definition
A hypergraph is a pair H = (V ,E) consisting of a set V of nodes and a set E of
subsets of V , called hyperedges.

28 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Example

Answer:−S(u, x),R(x , y),T (y , z , q),U(z , v),V (z ,w),

A(y ′, z ′, q′),B(y , z , y ′, z ′),C (z , q, z ′, q′)

as a hypergraph:

u x y z q

y’ z’ q’

v w

29 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Treewidth

Definition
A tree decomposition of a hypergraph G = (V ,E) is a tree T = (B,ET), where the
vertex set B ⊆ P(V) is a collection of bags and ET is a set of edges as follows:

1.
⋃

b∈B b = V ,
2. for every e ∈ E there is a bag b ∈ B with e ⊆ b, and
3. for all v ∈ V the subtree of T induced by the bags containing v is connected.

The width of the tree decomposition T is the size of the largest bag decreased by one:
maxb∈B |b| − 1. The treewidth of G is the minimum width over all tree decompositions
of G .

30 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

G is tree iff it has treewidth 1

Example

Left: our first “tree query”. Right: its tree decomposition of width 1.

x

y

z

v

u

w

x,y

u,x y,z

v,y y,w

31 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Last example

Example

Left: our last example query. Right: its tree decomposition of width 5.

u x y z q

y’ z’ q’

v w

x,y

u,x y,z,q
y’,z’,q’

z,v z,w

32 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

CQ-Evaluation for fixed treewidth

Theorem
Fix k ≥ 1. Then CQ-Evaluation, restricted to queries with treewidth at most k , can be
solved in time

O(||D||k+1 · ||q||4 · (log ||D||+ log ||q||)).

Key pointers:
▶ Tree decomposition can be constructed in time 2O(k3)||G || for a (hyper)graph G

with treewidth k [Bodlaender, 1996] =⇒ linear time for fixed k

▶ Treewidth = largest bag size - 1 =⇒ ||D||k+1-factor

33 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Happy?
Not happy. Efficient evaluation can be possible even with unbounded treewidth

Example

Consider “n-clique”+“one giant atom”:

Answer :− R(xi , xj)i ,j∈[n]
i ̸=j

,S(x1, . . . , xn)

Treewidth is n − 1, yet the following procedure is efficient:
▶ Step 1. S [x1, . . . , xn] := S [x1, . . . , xn]⋉ R[x1, x1]

▶ Step 2. S [x1, . . . , xn] := S [x1, . . . , xn]⋉ R[x1, x2]

▶ . . .

▶ Step n2. S [x1, . . . , xn] := S [x1, . . . , xn]⋉ R[xn, xn]

34 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Yannakakis revisited
The max size of a bag (in a tree decomposition) is not crucial; the number of
hyperedges covering a bag is. Bottom right: tree decomposition of our example query

Answer:−S(u, x),R(x , y),T (y , z , q),U(z , v),V (z ,w),

A(y ′, z ′, q′),B(y , z , y ′, z ′),C (z , q, z ′, q′)

Computation of Answer
1. X [y , z , q, y ′, z ′, q′] := B ▷◁ C

2. X [y , z , q, y ′, z ′, q′] := X ⋉ V

3. . . .
First step yields ||D||2-factor since the
big bag is covered by 2 atoms B and C

x,y

u,x y,z,q
y’,z’,q’

z,v z,w

35 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Treewidth revisited

Definition (Generalised hypertreewidth [Gottlob et al., 2003])
A generalised hypertree decomposition of a hypergraph H = (V ,E) is a triple
(B,ET , λ), where

1. (B,ET) is a tree decomposition of H.
2. λ is a mapping that assigns a subset of E to each bag b ∈ B .
3. For each bag b ∈ B , b ⊆

⋃
e∈λ(b) e.

The width of a hypertree is the cardinality of its largest λ-label, i.e., maxb∈B |λ(b)|.
The generalised hypertreewidth of H is the minimum over over widths of generalised
hypertree decompositions of H.

36 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

CQ-Evaluation for fixed generalised hypertreewidth

Theorem
Fix k ≥ 1. Then CQ-Evaluation, restricted to queries of generalised hypertreewidth at
most k , can be solved in time

2||q||
c
+ O(||D||k · ||q||), for some integer c ≥ 1.

Key pointers:
▶ Finding generalised hypertree decompositions is generally hard. 2||q||

c
accounts for

what is essentially a brute-force construction.
▶ Generalised hypertreewidth = largest bag cover =⇒ ||D||k -factor

Generalised hypertreewidth can be further generalised with the notion a fractional
hypertreewidth [Grohe and Marx, 2006], but let’s move on...

37 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Introduction

Complexity of CQ-Evaluation

Joins with Information Theory

Conclusion

38 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Efficient CQ-Evaluation: Recap

Recall CQ-Evaluation has two-partite input: (q,D)

Structural properties of q:
▶ Treewidth
▶ Generalised hypertreewidth

...lead to efficient query evaluation.

Properties of D?
▶ Cardinalities of relations?
▶ Constraints on relations?

Can we combine information from q and D to obtain efficient algorithms?

39 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Target

Let us consider again the case where the CQ q is non-Boolean, i.e., the output q(D) is
a relation

Target: Devise efficient algorithms for computing q(D)

Strategy:
1. Given structural properties of q and information about D, determine the

worst-case size of the output q(D).
2. Devise algorithms that run in time proportional to this worst-case output size.

40 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Join queries

We will consider join queries q.

The (natural) join of R1 and R2, denoted R1 ▷◁ R2, is the set of tuples that are formed
by combining tuples from R1 and R2 which agree on their common attributes.
“Formally”:

R ▷◁ S = {t | t[att(R)] ∈ R, t[att(S)] ∈ S},

where t[A] is the projection of a tuple t on an attribute set A.

Note: Join is associative and commutative

41 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

3-way join example

Example

Input Tables:

R[A,B] =

A B

1 10
2 20
3 30

S [A,C] =

A C

1 100
2 200
4 400

T [B,C] =

B C

10 100
20 300
30 300

Result of the Join:

R[A,B] ⋊⋉ S [A,C] ⋊⋉ T [B,C] =
A B C

1 10 100

42 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Joins vs. CQs

A join query R1 ⋊⋉ · · · ⋊⋉ Rn can be viewed as a CQ of the form

Answer(x⃗) :− R1(y⃗1), . . . ,Rn(y⃗n)

in which:
1. Each relation name Ri occurs exactly once.
2. For every i ∈ [n], no variables are repeated in y⃗i .
3. Every variable in y⃗i also appears in x⃗ .

43 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Example: “Triangle Query" q△
Consider the join query:

q△ = R[A,B] ⋊⋉ S [B,C] ⋊⋉ T [C ,A]

The hypergraph of q△ visualizes its structure:

C

A B

TT SS

RR

Question: How many tuples can there be in q△(D), where D is a database?
44 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Evaluating q△(D)

Assume R, S ,T each have N tuples

Trivially, |q△(D)| ≤ N3 (size of Cartesian product |R| · |S | · |T |)

However, |q△(D)| ≤ N2 due to attribute constraints. Consider the following
computation:

1. Compute R ⋊⋉ S , selecting tuples matching on B .
▶ Output size at most |R × S | ≤ N2

2. Join the result with T , selecting tuples matching on A and C .
▶ Can only remove tuples from the previous join

3. =⇒ Final output size at most |R × S | ≤ N2.

45 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Our naïve analysis yields:
|q△(D)| ≤ N2

The so-called AGM bound [Atserias et al., 2013] yields:

|q△(D)| ≤ N3/2 (1)

Next: Derivation of (1)

46 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Entropy

(Shannon) entropy of a random variable X with a finite domain D and a probability
mass function p:

H(X) := −
∑
x∈D

p(x) log p(x).

Useful bounds: 0 ≤ H(X) ≤ log |D|

Entropic function h(Xα) := H(Xα) (α ⊆ [n]) for Shannon entropies H arising from
marginals of some joint distribution of random variables X1, . . . ,Xn

Entropic region Γ∗n: the subset of R2n consisting of the entropic functions/vectors over
n random variables

47 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Laws of information

Example: conditioning decreases entropy

h(X | Y) = h(XY)− h(Y) ≤ h(X)

Polymatroid axioms:
▶ h(∅) = 0
▶ h(X) ≤ h(XY) (monotonicity)
▶ h(X) + h(XYZ) ≤ h(XY) + h(XZ) (submodularity)

Polymatroid axioms sound but incomplete [Zhang and Yeung, 1998]; there is no finite
axiomatic characterisation for entropic functions [Matús, 2007]

48 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Derivation of AGM bound I

Instance of Shearer’s Lemma:

1
2

(
h(XY)+ h(XZ)+ h(YZ)

)
= 1

2

(
h(X) + h(Y | X)+ h(X) + h(Z | X)+ h(Y) + h(Z | Y)

)
≥ 1

2

(
h(X) + h(Y | X)+ h(X) + h(Z | XY)+ h(Y | X) + h(Z | XY)

)
= h(X) + h(Y | X) + h(Z | XY)

= h(XYZ)

49 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Derivation of AGM bound II

Consider q△ = R[A,B] ▷◁ S [B,C] ▷◁ T [C ,A] and a database D = {R, S ,T} where
each relation at most of size N

If h is the entropic function of the output q△(D) uniformly distributed:

log |q△(D)| = h(ABC) ≤ 1
2
(
h(AB) + h(AC) + h(BC)

)
≤ 1

2
(
log |R|+ log |S |+ log |T |

)
≤ 3

2
logN

50 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Fractional Edge Cover
Definition
A fractional edge cover of a hypergraph H = (V ,E) is a function

f : E → Q≥0

such that, for each node v ∈ V , it holds that∑
v∈e

f (e) ≥ 1.

The cover f is called minimal when it minimises the weight∑
e∈E

f (e).

51 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Fractional Edge Cover for Triangle query

Example

Let f (e) = 1/2 for all e ∈ E . Then,
f (e) ≥ 0 for all hyperedges e, and:

C

A B

1/2 1/2

1/2∑
A∈e

f (e) = f ({A,B}) + f ({A,C}) = 1/2 + 1/2 ≥ 1∑
B∈e

f (e) = f ({A,B}) + f ({B,C}) = 1/2 + 1/2 ≥ 1∑
C∈e

f (e) = f ({A,C}) + f ({B,C}) = 1/2 + 1/2 ≥ 1

52 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Minimality of f

A minimal fractional edge cover for q△ = R[A,B] ▷◁ S [B,C] ▷◁ T [C ,A] can be found
by solving the following linear program:

minimize xR + xS + xT

subject to xR + xT ≥ 1,

xR + xS ≥ 1,

xS + xT ≥ 1,

and xR ≥ 0, xS ≥ 0, xT ≥ 0.

minimal fractional edge cover = values of xR , xS , xT at the optimal solution

53 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

AGM Bound for Join Queries

Theorem (AGM Bound)
Consider a join query q = R1 ⋊⋉ · · · ⋊⋉ Rn over schema S and a fractional edge cover f
of q. Then, for every database D, we have:

|q(D)| ≤
n∏

i=1

|Ri |f (S(Ri)). (2)

If f is a minimal, there are arbitrarily large databases D for which Eq. (2) is an equality,

54 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Optimal AGM bound for q△

Example

Assume |R| = |S | = |T | = N. Then:

C

A B

1/2 1/2

1/2

|q△(D)| ≤
n∏

i=1

|Ri |f (S(Ri)) = |R|1/2 · |S |1/2 · |T |1/2 =
√
|R| · |S | · |T | = N

√
N

55 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Inoptimality of binary joins

Suppose each of R,S ,T has the form

1 1

N tuples

1 2
...

...
1 (N + 1)/2
2 1
...

...
(N + 1)/2 1

▶ AGM bound = N
√
N

▶ Any intermediate binary join R ▷◁S ,R ▷◁T , S ▷◁T contains more than
(N/2)2 = 1

4N
2 tuples

Q: Possible to compute R ▷◁ S ▷◁ T in O(N
√
N)?

56 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Attribute-Elimination Join for R[A,B] ▷◁ S [B ,C] ▷◁ T [A,C]

1. Compute L1 := πA(R ▷◁ T).
2. For each a ∈ L1:

▶ Compute values b ∈ πB(R ▷◁ S) s.t.
(a, b) ∈ R and (b, c) ∈ S .

▶ Add pairs (a, b) to L2.
3. For each (a, b) ∈ L2:

▶ Compute values c ∈ πC (S ▷◁ T) s.t.
(b, c) ∈ S and (c , a) ∈ T .

▶ Add triples (a, b, c) to L3.

4. Return L3.

Relations R, S ,T :

Fig. source: [Arenas et al., 2022]

We obtain:
▶ L1 = {5, 2, 6, 7, 4, 10}
▶ L2 = {(5, 3), (2, 3), (2, 4), (6, 8), (4, 8)}
▶ L3 = {(5, 3, 1), (2, 3, 1)} 57 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Complexity of AEJoin

Theorem
Consider a join query q = R1 ▷◁ . . . ▷◁ Rn over attributes A1, . . . ,Am. Then the
Attribute-Elimination Join algorithm computes the output in time
Õ
(
n ·m ·

∏n
j=1 |Rj |xj

)
, where (x1, . . . , xn) is a fractional edge cover of q.

Note: For a function f (x⃗), we write Õ(f (x⃗)) = O(f (x⃗) log f (x⃗))

A join algorithm with running time Õ(nm|q(D)|) is called a worst-case optimal join
algorithm.

58 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Efficient CQ-Evaluation: Recap 2

CQ-Evaluation has two-partite input: (q,D). We considered:

Structural properties of q:
▶ Fractional edge cover

Properties of D:
▶ Cardinalities of relations

...to sketch a worst-case optimal join algorithm

59 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Efficient CQ-Evaluation: Recap 2

CQ-Evaluation has two-partite input: (q,D). We considered:

Structural properties of q:
▶ Fractional edge cover

Properties of D:
▶ Cardinalities of relations
▶ Constraints on relations?

...to sketch a worst-case optimal join algorithm

59 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

More input information: constraints

Target: Estimate |q(D)| given
1. join query q = R1[X 1] ▷◁ . . . ▷◁ Rn[X n]

2. degree constraints w.r.t. bounds B

60 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Degree constraints

Degree degR(V | U = u): number of distinct values of V in R under U = u

Max-degree degR(V | U): maximum of degrees degR(V | U = u) over u

▶ Functional dependencies U → V definable by degR(V | U) ≤ 1
▶ Size bounds |R| ≤ B definable by degR(U | ∅) ≤ B

Degree statistics: Set Σ of conditionals (V | U). A conditional (V | U) is guarded by a
relation R[X] if UV ⊆ X .

61 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Entropic bound
Target: Estimate |q(D)| given

1. join query q = R1[X 1] ▷◁ . . . ▷◁ Rn[X n]

2. degree statistics Σ and size vector B = (Bσ)σ∈Σ where each σ ∈ Σ guarded by
some atom Rσ(Xσ)

3. D |= (Σ,B), meaning degRσ
(V | U) ≤ Bσ for all σ = (V | U) ∈ Σ

Entropic bound (w.r.t. degree constraints) [Khamis et al., 2017] defined by2

Ent(q,B,Σ) = sup
w :Γ∗n |=(3)

∏
σ∈Σ

Bwσ
σ ,

where ∑
σ∈Σ

wσh(σ) ≥ h(X) (3)

2Γ∗
n |= (3) denotes that (3) holds for all functions h ∈ Γ∗

n (i.e., all entropic functions h)
62 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Derivation of entropic bound

Theorem
Let q(X) be a join query and D a database such that each σ = (V | U) ∈ Σ is guarded
by Rσ[X] ∈ q s.t. degRD

σ
(V | U) ≤ Bσ. If Γ∗n |=

∑
σ∈Σ wσh(σ) ≥ h(X), then

|q(D)| ≤
∏
σ∈Σ

Bwσ
σ

Proof.
If h is the entropic function of q(D) uniformly distributed, then

h(σ) = Eu [h(V | U = u)] ≤ max
u

h(V | U = u) ≤ max
u

log degq(D)(V | U = u)

≤ max
u

log degRσ
(V | U = u) = log degRσ

(V | U) ≤ logBσ

whence log |q(D)| = h(X) ≥
∑

σ∈Σ wσh(σ) ≥
∑

σ∈Σ wσ logBσ.

63 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Computability

The entropic bound

Ent(q,B,Σ) = sup
w :Γ∗n |=ϕ

∏
σ∈Σ

Bwσ
σ , where ϕ =

∑
σ∈Σ

wσh(σ) ≥ h(X),

▶ Asymptotically tight
▶ Not known to be computable.
▶ Polynomial-time computable if each σ = (V | U) ∈ Σ s.t. U is a singleton [Im et

al. 2022; H. 2024].

Polymatroid bound (obtained by replacing Γ∗n with Γn) not tight but computable in
exponential time in n.

64 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Recap: More input information

Target: Estimate |q(D)| given
1. join query q = R1[X 1] ▷◁ . . . ▷◁ Rn[X n]

2. degree constraints w.r.t. bounds B

Things get more complicated when incorporating information about constraints. See
[Suciu, 2023] for an in-depth review of the applications of information theory in
databases.

65 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Introduction

Complexity of CQ-Evaluation

Joins with Information Theory

Conclusion

66 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

CQ-Evaluation problem (given a database D and a Boolean CQ q, is q true for D?)
▶ Generally NP-complete
▶ Tractable when the hypergraph of the query is nearly acyclic (treewidth,

generalised hypertreewidth)
Join computation (outputs of non-Boolean CQs)
▶ Leverage structural properties of q (fractional edge cover) and cardinalities of

relations in D

▶ Worst-case optimal join algorithms run in time proportional to the worst-case
output size, the number of attributes, and the number of relations.

67 / 67

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

Arenas, M., Barceló, P., Libkin, L., Martens, W., and Pieris, A. (2022).
Database Theory.
Open source at https://github.com/pdm-book/community.

Atserias, A., Grohe, M., and Marx, D. (2013).
Size bounds and query plans for relational joins.
SIAM J. Comput., 42(4):1737–1767.

Bodlaender, H. L. (1996).
A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317.

Gottlob, G., Leone, N., and Scarcello, F. (2003).
Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width.
J. Comput. Syst. Sci., 66(4):775–808.

Grohe, M. and Marx, D. (2006).
Constraint solving via fractional edge covers.
In SODA, pages 289–298. ACM Press.

Hannula, M. (2024).
Information inequality problem over set functions.
In ICDT, volume 290 of LIPIcs, pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Im, S., Moseley, B., Ngo, H. Q., Pruhs, K., and Samadian, A. (2022).
Optimizing polymatroid functions.
CoRR, abs/2211.08381.

Khamis, M. A., Ngo, H. Q., and Suciu, D. (2017).

67 / 67

https://github.com/pdm-book/community

Introduction Complexity of CQ-Evaluation Joins with Information Theory Conclusion

What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another?
In PODS, pages 429–444. ACM.

Matús, F. (2007).
Infinitely many information inequalities.
In ISIT, pages 41–44. IEEE.

Suciu, D. (2023).
Applications of information inequalities to database theory problems.
In LICS, pages 1–30.

Yannakakis, M. (1981).
Algorithms for acyclic database schemes.
In VLDB, pages 82–94. IEEE Computer Society.

Zhang, Z. and Yeung, R. W. (1998).
On characterization of entropy function via information inequalities.
IEEE Trans. Inf. Theory, 44(4):1440–1452.

67 / 67

	Introduction
	Complexity of CQ-Evaluation
	Joins with Information Theory
	Conclusion

