Smooth (or Not So Smooth) Lattice Sampling

Maiara F. Bollauf joint work with Maja Lie & Cong Ling FOUNDATIONS SEMINAR - UNIVERSITY OF TARTU

• Mathematics of cryptography o Why and how to sample from lattices? • State of the art

Behind every secure cryptosystem lies a mathematical problem that must be hard to solve

RSA

Hard problem: Decomposition of a number into prime factors

Given N = pq, where p and q are large primes, find p and q given just N

Elliptic-Curve Cryptography

Hard problem: The discrete logarithm problem

find a positive integer x such that $a^x = b$

Given G a finite group, $a \in G$, and $b \in \langle a \rangle$

Peter Shor

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor AT&T Bell Labs Room 2D-149 600 Mountain Ave. Murray Hill, NJ 07974, USA

1994

Source: Reddit - <u>https://images.app.goo.gl/FTyyeF1reNgppc2f9</u>

NIST (National Institute of Standards and Technology) proposed a standardization process for post-quantum cryptography in 2016

The selected algorithms were announced in 2022

and published in 2024

KE/KEM	Signature
STALS-Kyber	CRYSTALS- Dilithium FALCON
	SPHINCS+

Discrete additive subgroup of \mathbb{R}^n .

For crypto applications, subgroups of \mathbb{Z}^n are complicated enough.

Source: https://images.app.goo.gl/ExdgiqxX1stUkgXDA

A LATTICE USES THE MATRIX?

Hard Problems on Lattices

SVP (Shortest Vector Problem)

Given a lattice Λ , find a lattice vector with the smallest Euclidean norm.

Hard Problems on Lattices

CVP (Closest Vector Problem):

Given a lattice Λ and a real vector **v**, find the lattice vector closest to **v**.

Hard Problems on Lattices

And many others...

- **O LWE** (Learning with Errors)
- **O LIP** (Lattice Isomorphism Problem)
- **o SIS** (Short Integer Solution)
- o SIVP (Shortest Independent Vectors Problem)
- **O SBP** (Shortest Basis Problem)
- 0 ...

Sampling

The act, process or technique of selecting a suitable sample for the purpose of determining parameters or characteristics of the whole"

Given a lattice Λ , a vector $\mathbf{c} \in \mathbb{R}^n$ and s > 0,

a sampler is a randomized decoder that outputs a lattice vector relatively close to c

The discrete Gaussian distribution on a lattice Λ with parameter sand center $\mathbf{c} \in \mathbb{R}^n$ is the distribution that assigns to each point $\mathbf{x} \in \Lambda$ mass proportional to $e^{-\pi \|\mathbf{x}-\mathbf{c}\|^2/s^2}$

O. Regev, The Learning with Errors Problem , 2010

 $D_{\mathbb{Z}_{113},s=5.65}$

$D_{\Lambda,2}$, $D_{\Lambda,1}$

for a 2D lattice Λ

O. Regev, The Learning with Errors Problem , 2010

Samples from $D_{\Lambda,s}$ are lattice vectors of norm \sqrt{ns} , considering that s is not too small

Continuous Gaussian

$$\mathbf{x} \sim \operatorname{Gauss}(s) \rightarrow \frac{\mathbf{x}}{2} \sim \operatorname{Gauss}(s/2)$$

 $\mathbf{x}_1, \mathbf{x}_2 \sim \text{Gauss}(s) \rightarrow \frac{\mathbf{x}_1 + \mathbf{x}_2}{2} \sim \text{Gauss}\left(\sqrt{s/2}\right)$

Discrete Gaussian

 $\mathbf{y} \sim D_{\Lambda,s} \nleftrightarrow \frac{\mathbf{y}}{2} \sim D_{\Lambda,s/2}$

 $\mathbf{y}_1, \mathbf{y}_2 \sim D_{\Lambda,s} \nleftrightarrow \frac{\mathbf{y}_1 + \mathbf{y}_2}{2} \sim D_{\Lambda,\sqrt{s/2}}$

Smoothing Parameter

$\sum e^{-\pi s^2 \|\mathbf{x}\|^2} \leq \varepsilon$

For any n-dimensional lattice Λ and a positive real $\varepsilon > 0$, the **smoothing parameter** $\eta_{\epsilon}(\Lambda)$ is the smallest s > 0 such that

 $\Lambda^* = \{ \mathbf{y} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{Z}, \forall \mathbf{x} \in \Lambda \} \text{ is the dual lattice}$

Smoothing Parameter

$e^{-\pi s^2 \|\mathbf{x}\|^2} \leq \varepsilon$ $x \in \Lambda^* \setminus \{0\}$

For any n-dimensional lattice Λ and a positive real $\varepsilon > 0$, the **smoothing parameter** $\eta_{\varepsilon}(\Lambda)$ is the smallest s > 0 such that

Not trivial to calculate/estimate

My favorite lattice measure: the theta series

Smoothing Parameter

almost uniformly at random

the continuous Gaussian distribution

- O It is the minimal amount of noise such that the result is distributed
- For large enough s, the discrete Gaussian distribution resembles

Small sampling width *s*

Solving the Shortest Vector Problem in 2ⁿ Time via Discrete Gaussian Sampling

Extended Abstract*

Divesh Aggarwal Department of Computer Science, EPFL.

Daniel Dadush Centrum Wiskunde & Informatica, Amsterdam. dadush@cwi.nl

Noah Stephens-Davidowitz Courant Institute of Mathematical Sciences, New York University. Oded Regev Courant Institute of Mathematical Sciences, New York University.

STOC'15

Solving the Closest Vector Problem in 2ⁿ Time—

The Discrete Gaussian Strikes Again!

Divesh Aggarwal*, Daniel Dadush⁺, and Noah Stephens-Davidowitz[‡] *Department of Computer Science, EPFL Email: Divesh.Aggarwal@epfl.ch ⁺Centrum Wiskunde & Informatica, Amsterdam Email: dadush@cwi.nl [‡]Courant Institute of Mathematical Sciences, New York University Email: noahsd@cs.nyu.edu

FOCS'15

$$D_{\Lambda,2}$$
 , $D_{\Lambda,1}$

for a 2D lattice Λ

O. Regev, The Learning with Errors Problem , 2010

Samples from $D_{\Lambda,s}$ are lattice vectors of norm \sqrt{ns} , considering that s is not too small

Applications in digital signature schemes

Verify(PubKey, Sig, Doc) = YES

Yes or No

Sig=Sign(PrivKey,Doc)

Some broken signature schemes were using only the geometry of the lattice basis for signing

Geometry of the basis

7

Geometry of the lattice

Few signatures

One can get enough information to guess the secret basis!

Lots of signatures

Ideal signature schemes are based on functions that do not reveal the good basis geometry

Applications in digital signature schemes: [GPV08]

Trapdoors for Hard Lattices and New Cryptographic Constructions

(Extended Abstract)

Craig Gentry* Stanford University cgentry@cs.stanford.edu Chris Peikert[†] SRI International cpeikert@alum.mit.edu Vinod Vaikuntanathan[‡] MIT vinodv@mit.edu

STOC'08

o "Hash-then-sign" signature scheme

• Requires sampling from a discrete Gaussian where *s* is the length of the longest Gram-Schmidt vector of the basis

Applications in digital signature schemes: [GPV08]

The signature is $\mathbf{s} = \mathbf{t} - \mathbf{v}$

Gaussian sampling

Applications in digital signature schemes: [GPV08]

Thomas Prest, Gaussian Sampling in Lattice-Based Cryptography, PhD Thesis, 2015

Applications in digital signature schemes: [GPV08]

• The smaller $\|\mathbf{s}\|$, the harder to forge signatures **O** The better the secret basis, the smaller the samples parameter

- Their sample is efficient for $s \gg \lambda_1(\Lambda)$, above the smoothing

PKE/KEM	Signature
STALS-Kyber	CRYSTALS- Dilithium FALCON
	SPHINCS+

Applications in digital signature schemes: FALCON

uses the [GPV08] framework on NTRU lattices

Applications in digital signature schemes: [DW22]

On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography

Léo Ducas^{1,2} and Wessel van Woerden^{$1(\boxtimes)$}

 ¹ CWI, Cryptology Group, Amsterdam, The Netherlands www@cwi.nl
² Mathematical Institute, Leiden University, Leiden, The Netherlands

EUROCRYPT'22

"Our signature scheme can be instantiated with any lattice for which we can sample efficiently at small Gaussian widths"

- Signature scheme based on Gaussian sampling
- Does not depend on Gram-Schmidt or Cholesky matrices

Applications in digital signature schemes: [DW22]

Compute
$$\mathbf{t} \leftarrow H(m)$$

Sample $\mathbf{s}' \leftarrow D_{\mathbb{Z}^n, \rho/\sqrt{n}, U\mathbf{t}}$
Compute $\mathbf{s} \leftarrow U^{-1}\mathbf{s}'$, $\mathbf{s} \in \mathbb{Z}^n$

Gaussian sampling with width ρ/\sqrt{n}

Compute $\mathbf{t} \leftarrow H(m)$ $b = \begin{cases} 1, \text{ if } \mathbf{s} \in \mathbb{Z}^n \text{ and } \|\mathbf{t} - \mathbf{s}\| \leq \rho \\ 0, \text{ otherwise} \end{cases}$

A Core Memory

S

Reveals the lattice structure Could solve hard lattice problems

Smoothing parameter Ideal sampling width

S

Lattice-based signature schemes rely on being able to sample efficiently

Easier to forge signatures

S

Finding the closest lattice vector when it's unusually close

Philip Klein* Brown University

SODA'00

Works well for $s \ge \eta_{\varepsilon}(\mathbb{Z}) \max_{i} \|\mathbf{b}_{i}^{*}\|$, where \mathbf{B}^* is an orthogonal basis for the lattice

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time

Daniele Micciancio and Michael Walter^(⊠)

University of California, San Diego, La Jolla, USA {daniele,miwalter}@eng.ucsd.edu

CRYPTO'17

• Works well for the \mathbb{Z}^n lattice using one-dimensional samplers

 It is commonly used as subroutine for other lattices

ON GAUSSIAN SAMPLING, SMOOTHING PARAMETER

. . .

APPLICATION TO LATTICE SIGNATURES

THOMAS ESPITAU^{*}, ALEXANDRE WALLET^{*}, AND YANG YU[†]

ASIACRYPT'23

- Works well for known families of lattices, such as root lattices
- The sampling width can be set to the smoothing parameter, but it relies on approximations
- Best results are for 2D lattice A_2

Trapdoors for Hard Lattices and New Cryptographic Constructions

(Extended Abstract)

Craig Gentry* Stanford University cgentry@cs.stanford.edu Chris Peikert[†] SRI International cpeikert@alum.mit.edu

STOC'08

Vinod Vaikuntanathan[‡] MIT vinodv@mit.edu

Solving the Shortest Vector Problem in 2^n Time via Discrete Gaussian Sampling

Divesh Aggarwal Department of Computer Science, EPFL.

Ν

STOC'15

Extended Abstract*

Daniel Dadush Centrum Wiskunde & Informatica, Amsterdam. dadush@cwi.nl

Noah Stephens-Davidowitz Courant Institute of Mathematical Sciences, New York University. Oded Regev Courant Institute of Mathematical Sciences, New York University. Solving the Closest Vector Problem in 2ⁿ Time— The Discrete Gaussian Strikes Again!

> Divesh Aggarwal*, Daniel Dadush[†], and Noah Stephens-Davidowitz[‡] *Department of Computer Science, EPFL Email: Divesh.Aggarwal@epfl.ch [†]Centrum Wiskunde & Informatica, Amsterdam Email: dadush@cwi.nl [‡]Courant Institute of Mathematical Sciences, New York University Email: noahsd@cs.nyu.edu

> > FOCS'15

- Efficient but limited samplers (with *s* depending on the basis or much larger than the smoothing parameter)
- Very inneficient but arbitrarily good samplers $\sim 2^{n+o(n)}$

Our Brand New Discovery...

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight

Maiara F. Bollauf¹, Maja Lie², and Cong Ling²

CRYPTO'25

For crypto applications, subgroups of \mathbb{Z}^n are complicated enough.

• Lattices such that $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$ • They can be expressed as $\mathscr{C} + q\mathbb{Z}^n$, \mathscr{C} is a linear code over \mathbb{Z}_q

-> q-ary lattices

 $\mathscr{C} + 2\mathbb{Z}^2$

 $\mathscr{C} + 2\mathbb{Z}^2$

Gaussian sampling on q-ary lattices

Sampling codewords with respect to the Lee weight

 $\omega_{Lee}(x) = \min\{x, q - x\}$

Techniques: Lee weight + cosets +

code symmetries + sampling over \mathbb{Z}

We propose a new sampler for arbitrary width s

We improve the state-of-the-art sampling for some families of lattices

	Complexity	Sampling Width s			
Lattice	Speed-up (UB)	[13]	This work	LWP Table	Size $\#$ Cosets
A_2	$18 \times$	$pprox \eta_{\epsilon}(A_2)$	$=\eta_{\epsilon}(A_2)$	-	2
E_8	22 imes	$pprox \eta_{\epsilon}(\mathrm{E}_8)$	$=\eta_{\epsilon}(\mathrm{E}_8)$	$14 \mathrm{bits}$	2^4
D_n	2 imes	$pprox \eta_{\epsilon}(\mathrm{D}_n)$	$=\eta_{\epsilon}(\mathrm{D}_n)$	-	2
Λ_{24}	2 imes	$pprox \eta_{\epsilon}(\mathrm{E}_8)$	$=\eta_{\epsilon}(\Lambda_{24})$	$34 \mathrm{bits}$	2^{12}
BW_{16}	$11 \times$	$> \eta_{\epsilon}(\mathrm{BW}_8)$	$=\eta_{\epsilon}(\mathrm{BW}_{16})$	17 bits	2^{11}

Sampling tehcnique

Exact calculation of the smoothing parameter

the codewords and their weights

Not efficient in general, since it requires enumerating

More Details?

Tuesday 03/06/2025

Institute of Computer Science

Maja Lie will visit Tartu from 29/06/2025 to 11/07/2025 and will present an extended and slightly more technical version of our joint work

Source: ChatGPT

More details at: <u>https://eprint.iacr.org/2025/087</u>

